版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、辽宁丹东宽甸二中2013高三第一次诊断性测试数 学(理)(考试时间120分钟,满分150分)第卷一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求) 1.已知全集,集合或,集合 ,那么集合( ) A B. C. D.或 2.下列命题中,是真命题的是( ) AR , B. C. D. 3.已知函数 则的值为( ) A B. C. D. 4.定积分的值为( ) A B. C. D. 5.若则的值为( ) A B. C. D.-2 6.已知是两条不同的直线,是两个不重合的平面,给出下列命题: 若,则 若则 ; 若则 ; 若则; 其中正确命题的个数为( ) A
2、.个 B.2个 C.3个 D. 4个7.方程在区间上有解,则实数的取值范围是 ( ) A. B. C. D. 8.已知的外接圆半径为,角、的对边分别为、且那么角的大小为 ( ) A B. C. D. 9.内接于以为圆心,1为半径的圆,且则.的值为( ) A. B. C. D.10. 定义在上的函数满足且当时递增, 若则的值是 ( ) A.恒为正数 B.恒为负数 C. 等于0 D. 正、负都有可能 11.半径为4的球面上有、四点,、两两互相垂直,则 、面积和的最大值为 ( )A8 B.16 C.32. D.6412.为线段上一点,为直线外一点,满 , , 则( ) A1 B. C. D.2第 卷
3、本卷包括必考题和选考题两部分,第13题第21题为必考题,每个考题考生都必须作答, 第22题24题为选考题,考生根据要求作答。二、填空题:(本大题共4小题,每小题5分,把答案填在题中的横线上。)13.若实数满足不等式组 , 则的最小值是 .14.在数列中 , 则 .15.已知函数,若最小值为,则的值为 .16.椭圆的左右焦点为,弦过点,若的内切圆周长为,点坐标分别为,则 .三、解答题:(解答应写出必要的文字说明、证明过程及演算步骤。)开始输入a1,d,kS=0,M=0,i=1i=i+1S=S+MM=i< k?输出S结束17.(本小题满分12分)已知数列的各项全为正数,观察流程图,当时, ;
4、 当时, ;写出时,的表达式(用,等表示);求的通项公式; 令,求. 18.一个多面体的直观图和三视图如图所示,其中、分别是、的中点,是上的一动点,主视图与俯视图都为正方形。 求证:; 当时,在棱上确定一点,使得平面,并给出证明。 求二面角的平面角余弦值。AMBCDFESNG 左主俯、19.一学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为。 求该生被录取的概率;
5、记该生参加考试的项数为,求的分布列和期望。20.已知点,点,直线、都是圆的切线(点不在轴上).求过点且焦点在轴上抛物线的标准方程;过点作直线与中的抛物线相交于、两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。21.已知 若是的极值点,求实数值。若对都有成立,求实数的取值范围。请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。(满分10分)22、(本小题满分10分)选修41:几何证明选讲ADBCE·O如图,在中, 是角平分线,交于是的外接圆。 求证:是的切线; 如果,求的长。 23.(本小题满分10分)选修44:坐标系与参
6、数方程已知直线:为参数),圆(极轴与轴的非负半轴重合,且单位长度相同)。求圆心到直线的距离;若直线被圆截的弦长为,求的值。24.(本小题满分10分)选修45:不等式选讲已知函数。当时,求函数的最小值;当函数的定义域为时,求实数的取值范围。参考答案一、 选择题1.B 2.B 3.D 4.C 5.A 6.B 7.C 8.C 9.A 10.A 11.C 12.D二、填空题13.4 14.391 15.或 16.三、解答题17解:(1)时;. (2分)(2)时; 时;得到 解得 (5分) (8分)(3)(12)18. 证明:(1) (4分)(2)如图所示,建立空间直角坐标系,设 ,有AMBCDFESN
7、G 设平面的法向量为则 令得到 得到 得到P点为A点(8分)(3)平面的法向量为,设所求二面角为,则 12分)19.解:(1) (6分) (2)设的取值为2,3,4,5,其分布列为2345(10分) (12分)20.解:(1)设 得到 解得 (2分)得到代入中 ,解得 (4分)(2)联立 得到 ,有,(6分)设 (9分) 当且时, ,即定点(12分)21解:(1) 解得 (2分) (2), 在 (4分) ,当时,在, 不符题意 (6分)当时, 解得,解得,得到在 ,在,解得(9分) 当,在 解得 即 满足条件 (12分)22解:(1) 所以AC是圆O的切线(5分) (2)设OD=x,则, 解得x=3 又,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度仓储物流仓单质押信用担保合作协议范本3篇
- 2025年度智能交通系统建设项目承包协议书模板4篇
- 2024版规范化技术服务协议样本版
- 2025年度砖厂节能减排技术承包合同4篇
- 2025年度智能标识技术采购合同范本汇编3篇
- 2025年棕榈油项目可行性研究报告
- 《高频波机培训教材》课件
- 2025年春季花卉展销会鲜花采购合同3篇
- 2025年智能家居设备合作意向协议书3篇
- 2025年物业管理责任服务协议书(含垃圾分类)3篇
- 全国医学博士英语统一考试词汇表(10000词全) - 打印版
- 最新《会计职业道德》课件
- 广东省湛江市各县区乡镇行政村村庄村名明细
- DB64∕T 1776-2021 水土保持生态监测站点建设与监测技术规范
- 中医院医院等级复评实施方案
- 数学-九宫数独100题(附答案)
- 理正深基坑之钢板桩受力计算
- 学校年级组管理经验
- 10KV高压环网柜(交接)试验
- 未来水电工程建设抽水蓄能电站BIM项目解决方案
- 房屋出租家具电器清单
评论
0/150
提交评论