大一高数教案ppt课件_第1页
大一高数教案ppt课件_第2页
大一高数教案ppt课件_第3页
大一高数教案ppt课件_第4页
大一高数教案ppt课件_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、问题的提出一、问题的提出1.自在落体运动的瞬时速度问题自在落体运动的瞬时速度问题0tt ,0时时刻刻的的瞬瞬时时速速度度求求tt如图如图,0tt 的的时时刻刻取取一一邻邻近近于于, t 运动时间运动时间tsv 平均速度平均速度00ttss ).(20ttg ,0时时当当tt 取极限得取极限得2t)(tlimv00 gtt瞬瞬时时速速度度.0gt 2.切线问题切线问题割线的极限位置割线的极限位置切线位置切线位置播放播放 T0 xxoxy)(xfy CNM如图如图, 假设割线假设割线MN绕点绕点M旋转而趋向极限位置旋转而趋向极限位置MT,直线直线MT就称为曲线就称为曲线C在点在点M处的切线处的

2、切线.极限位置即极限位置即. 0, 0 NMTMN).,(),(00yxNyxM设设的的斜斜率率为为割割线线MN00tanxxyy ,)()(00 xxxfxf ,0 xxMNC沿沿曲曲线线的斜率为的斜率为切线切线MT.)()(limtan000 xxxfxfkxx 二、导数的定义二、导数的定义,)(,)(,0);()(,)(,)(00000000 xxyxxfyxxfyxxyxfxxfyyxxxxxxxfy 记为记为处的导数处的导数在点在点数数并称这个极限为函并称这个极限为函处可导处可导在点在点则称函数则称函数时的极限存在时的极限存在之比当之比当与与如果如果得增量得增量取取相应地函数相应地函

3、数时时仍在该邻域内仍在该邻域内点点处取得增量处取得增量在在当自变量当自变量有定义有定义的某个邻域内的某个邻域内在点在点设函数设函数定义定义.)()(lim)(0000hxfhxfxfh 其它方式其它方式.)()(lim)(0000 xxxfxfxfxx xxfxxfxyyxxxx )()(limlim00000,)(00 xxxxdxxdfdxdy 或或即即.,0慢慢程程度度而而变变化化的的快快因因变变量量随随自自变变量量的的变变化化反反映映了了它它处处的的变变化化率率点点导导数数是是因因变变量量在在点点 x.)(,)(内内可可导导在在开开区区间间就就称称函函数数处处都都可可导导内内的的每每点

4、点在在开开区区间间如如果果函函数数IxfIxfy 关于导数的阐明:关于导数的阐明:.)(),(,.)(.)(,dxxdfdxdyxfyxfxfIx或或记作记作的导函数的导函数这个函数叫做原来函数这个函数叫做原来函数导数值导数值的一个确定的的一个确定的都对应着都对应着对于任一对于任一 xxfxxfyx )()(lim0即即.)()(lim)(0hxfhxfxfh 或或留意留意: :.)()(. 100 xxxfxf 播放播放2.导函数导函数(瞬时变化率瞬时变化率)是函数平均变化率的逼近是函数平均变化率的逼近函数函数.2.右导数右导数:单侧导数单侧导数1.左导数左导数:;)()(lim)()(li

5、m)(00000000 xxfxxfxxxfxfxfxxx ;)()(lim)()(lim)(00000000 xxfxxfxxxfxfxfxxx 函函数数)(xf在在点点0 x处处可可导导左左导导数数)(0 xf 和和右右导导数数)(0 xf 都都存存在在且且相相等等.如如果果)(xf在在开开区区间间 ba,内内可可导导,且且)(af 及及)(bf 都都存存在在,就就说说)(xf在在闭闭区区间间 ba,上上可可导导.,),(),()(000可可导导性性的的讨讨论论在在点点设设函函数数xxxxxxxxf xxfxxfx )()(lim000若若xxxxx )()(lim000 ,)(0存存在在

6、xf 则则)(xf在在点点0 x可可导导,,)(0存存在在xf xxfxxfx )()(lim000若若xxxxx )()(lim000 ,)()(00axfxf 且且.)(0axf 且且三、由定义求导数三、由定义求导数步骤步骤:);()()1(xfxxfy 求增量求增量;)()()2(xxfxxfxy 算算比比值值.lim)3(0 xyyx 求求极极限限例例1 1.)()(的导数的导数为常数为常数求函数求函数CCxf 解解hxfhxfxfh)()(lim)(0 hCCh 0lim. 0 . 0)( C即即例例2 2.)(sin)(sin,sin)(4 xxxxxf及及求求设设函函数数解解hx

7、hxxhsin)sin(lim)(sin0 22sin)2cos(lim0hhhxh .cos x .cos)(sinxx 即即44cos)(sin xxxx.22 例例3 3.)(的的导导数数为为正正整整数数求求函函数数nxyn 解解hxhxxnnhn )(lim)(0! 2)1(lim1210 nnnhhhxnnnx1 nnx.)(1 nnnxx即即更普通地更普通地)(.)(1Rxx )( x例如例如,12121 x.21x )(1 x11)1( x.12x 例例4 4.)1, 0()(的导数的导数求函数求函数 aaaxfx解解haaaxhxhx 0lim)(haahhx1lim0 .ln

8、aax .ln)(aaaxx 即即.)(xxee 例例5 5.)1, 0(log的导数的导数求函数求函数 aaxya解解hxhxyaahlog)(loglim0 .log1)(logexxaa 即即.1)(lnxx xxhxhah1)1(loglim0 hxahxhx)1(loglim10 .log1exa 例例6 6.0)(处处的的可可导导性性在在讨讨论论函函数数 xxxf解解xy xyo,)0()0(hhhfhf hhhfhfhh 00lim)0()0(lim, 1 hhhfhfhh 00lim)0()0(lim. 1 ),0()0( ff即即.0)(点点不不可可导导在在函函数数 xxfy

9、四、导数的几何意义与物理意义四、导数的几何意义与物理意义oxy)(xfy T0 xM1.几何意义几何意义)(,tan)(,)(,()()(0000为倾角为倾角即即切线的斜率切线的斜率处的处的在点在点表示曲线表示曲线 xfxfxMxfyxf切线方程为切线方程为法线方程为法线方程为).)(000 xxxfyy ).()(1000 xxxfyy 例例7 7.,)2 ,21(1方方程程和和法法线线方方程程并并写写出出在在该该点点处处的的切切线线斜斜率率处处的的切切线线的的在在点点求求等等边边双双曲曲线线xy 解解由导数的几何意义由导数的几何意义, 得切线斜率为得切线斜率为21 xyk21)1( xx2

10、121 xx. 4 所求切线方程为所求切线方程为法线方程为法线方程为),21(42 xy),21(412 xy. 044 yx即即. 01582 yx即即2.物理意义物理意义非均匀变化量的瞬时变化率非均匀变化量的瞬时变化率.变速直线运动变速直线运动: :路程对时间的导数为物体的路程对时间的导数为物体的瞬时速度瞬时速度. .lim)(0dtdststvt 交流电路交流电路: :电量对时间的导数为电流强度电量对时间的导数为电流强度. .lim)(0dtdqtqtit 非均匀的物体非均匀的物体: :质量对长度质量对长度( (面积面积, ,体积体积) )的导的导数为物体的线数为物体的线( (面面, ,

11、体体) )密度密度. .五、可导与延续的关系五、可导与延续的关系定理定理 凡可导函数都是延续函数凡可导函数都是延续函数. .证证,)(0可可导导在在点点设设函函数数xxf)(lim00 xfxyx )(0 xfxyxxxfy )(0)(limlim000 xxxfyxx 0 .)(0连连续续在在点点函函数数xxf)0(0 x 延续函数不存在导数举例延续函数不存在导数举例.,)()()(,)(. 1000函数在角点不可导函数在角点不可导的角点的角点为函数为函数则称点则称点若若连续连续函数函数xfxxfxfxf xy2xy 0 xy 例如例如,0,0,)(2 xxxxxf.)(0,0的的角角点点为

12、为处处不不可可导导在在xfxx 留意留意: : 该定理的逆定理不成立该定理的逆定理不成立. .31xyxy01)( .)(,)()(limlim,)(. 2000000不可导不可导有无穷导数有无穷导数在点在点称函数称函数但但连续连续在点在点设函数设函数xxfxxfxxfxyxxfxx 例如例如, 1)(3 xxf.1处不可导处不可导在在 x.,)()(. 30点不可导点不可导则则指摆动不定指摆动不定不存在不存在在连续点的左右导数都在连续点的左右导数都函数函数xxf,0, 00,1sin)( xxxxxf例如例如,.0处不可导处不可导在在 x011/1/xy.)()(,)(. 4000不可导点不

13、可导点的尖点的尖点为函数为函数则称点则称点符号相反符号相反的两个单侧导数的两个单侧导数且在点且在点若若xfxxxf xyoxy0 xo)(xfy )(xfy 例例8 8.0,0, 00,1sin)(处的连续性与可导性处的连续性与可导性在在讨论函数讨论函数 xxxxxxf解解,1sin是有界函数是有界函数x01sinlim0 xxx.0)(处连续处连续在在 xxf处处有有但但在在0 xxxxxy 001sin)0(x 1sin.11,0之之间间振振荡荡而而极极限限不不存存在在和和在在时时当当 xyx.0)(处不可导处不可导在在 xxf0)(lim)0(0 xffx六、小结六、小结1. 导数的本质

14、导数的本质: 增量比的极限增量比的极限;2. axf )(0 )(0 xf;)(0axf 3. 导数的几何意义导数的几何意义: 切线的斜率切线的斜率;4. 函数可导一定延续,但延续不一定可导函数可导一定延续,但延续不一定可导;5. 求导数最根本的方法求导数最根本的方法: 由定义求导数由定义求导数.6. 判别可导性判别可导性不延续不延续,一定不可导一定不可导.延续延续直接用定义直接用定义;看左右导数能否存在且相等看左右导数能否存在且相等.思索题思索题 函数函数)(xf在某点在某点0 x处的导数处的导数)(0 xf 与导函数与导函数)(xf 有什么区别与联系?有什么区别与联系?思索题解答思索题解答

15、 由导数的定义知,由导数的定义知,)(0 xf 是一个具体的是一个具体的数值,数值,)(xf 是由于是由于)(xf在某区间在某区间I上每一上每一点都可导而定义在点都可导而定义在I上的一个新函数,即上的一个新函数,即Ix ,有唯一值,有唯一值)(xf 与之对应,所以两与之对应,所以两者的者的区别区别是:一个是数值,另一个是函数两是:一个是数值,另一个是函数两者的者的联系联系是:在某点是:在某点0 x处的导数处的导数)(0 xf 即是导即是导函数函数)(xf 在在0 x处的函数值处的函数值一、一、 填空题:填空题:1 1、 设设)(xf在在0 xx 处可导,即处可导,即)(0 xf 存在,则存在,

16、则 _)()(lim000 xxfxxfx , , _)()(lim000 xxfxxfx . .2 2、 已知物体的运动规律为已知物体的运动规律为2ts ( (米米) ),则该物体在,则该物体在 2 t秒时的速度为秒时的速度为_ ._ .3 3、 设设321)(xxy , ,221)(xxy , ,53223)(xxxxy , , 则则它们的导数分别为它们的导数分别为dxdy1=_ =_ ,dxdy2=_ =_ ,dxdy3=_ .=_ .练练习习题题4 4、 设设2)(xxf , ,则则 )(xff_ _; )(xff_._.5 5、 曲 线曲 线xey 在 点在 点)1,0(处 的 切

17、线 方 程 为处 的 切 线 方 程 为_._.二二、 在在下下列列各各题题中中均均假假定定)(0 xf 存存在在,按按照照导导数数的的定定义义观观察察下下列列极极限限,分分析析并并指指出出A表表示示什什么么? 1 1、Axxxfxfxx 00)()(lim0; 2 2、Ahhfh )(lim0,其其中中)0(0)0(ff 且且存存在在; 3 3、Ahhxfhxfh )()(lim000. .三三、证证明明:若若)(xf为为偶偶函函数数且且)0(f 存存在在,则则0)0( f. .四四、 设设函函数数 0,00,1sin)(xxxxxfk问问k k满满足足什什么么条条件件,)(xf在在0 x处

18、处 ( (1 1) )连连续续; (2 2)可可导导;(3 3)导导数数连连续续. .五五、 设设函函数数 1,1,)(2xbaxxxxf, ,为为了了使使函函数数)(xf在在1 x处处连连续续且且可可导导,ba ,应应取取什什么么值值. .六六、 已已知知 0,0,sin)(xxxxxf, ,求求)(xf. .七七、 证证明明:双双曲曲线线2axy 上上任任一一点点处处的的切切线线与与两两 坐坐标标轴轴构构成成的的三三角角形形的的面面积积都都等等于于22a. .八、八、 设有一根细棒,取棒的一端作为原点,棒上任意点设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为的坐标为x,于是分布在区间

19、,于是分布在区间1,0上细棒的质上细棒的质量量m是是x的函数的函数)(xmm 应怎样确定细棒在点应怎样确定细棒在点0 x处的线密度处的线密度(对于均匀细棒来说,单位长度细棒(对于均匀细棒来说,单位长度细棒的质量叫作这细棒的线密度)?的质量叫作这细棒的线密度)?一、一、1 1、)(0 xf ; 2 2、)(0 xf ; 3 3、6533161,2,32 xxx; 3 3、24x, ,22x; 5 5、01 yx. .二、二、1 1、)(0 xf ; 2 2、)0(f ; 3 3、)(20 xf . .四、四、(1)(1)当当0 k时时, ,)(xf在在0 x处连续;处连续;(2)(2)当当1 k

20、时时, ,)(xf在在0 x处可导处可导, ,且且0)0( f; (3) (3)当当2 k及及0 x时时, ,)(xf 在在0 x处连续处连续. .五、五、1, 2 ba. .六、六、 0, 10,cos)(xxxxf. . 八、八、0 xxdxdm . .练习题答案练习题答案2.切线问题切线问题割线的极限位置割线的极限位置切线位置切线位置2.切线问题切线问题割线的极限位置割线的极限位置切线位置切线位置2.切线问题切线问题割线的极限位置割线的极限位置切线位置切线位置2.切线问题切线问题割线的极限位置割线的极限位置切线位置切线位置2.切线问题切线问题割线的极限位置割线的极限位置切线位置切线位置2.切线问题切线问题割线的极限位置割线的极限位置切线位置切线位置2.切线问题切线问题割线的极限位置割线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论