




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、导数应用:含参函数的单调性讨论(一)一、思想方法:讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。二、典例讲解例1 讨论的单调性,求其单调区间步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。变式练习1 : 讨论的单调性,求其单调区间 例2讨论的单调性小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出的零点,再其分区间然后定在相应区间内的符号。一般先讨论无
2、解情况,再讨论解过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x范围扩大而出现有根,但根实际上不在定义域内的),即根据零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。变式练习2. 讨论的单调性 小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。 对于二次型函数(如)讨论正负一般先根据二次项系数分三种类型讨论。例3 求的单调区间小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、
3、等三种情况)。含参二次不等式解时要先看能否因式分解,若能则是计算简单的问题,需看开口及两根大小,注意结合图象确定相应区间正负。变式练习3求的单调区间 小结:三次函数的导函数是常见二次函数,当二次函数开口定时对其正负进行讨论的,要根据判别式讨论:无根的或两根相等的导函数只有一种符号,相应原函数是单调的较简单应先讨论;然后再讨论有两不等根的,结合导函数图象列变化表,注意用根的符号代替复杂的式,最后结论才写回。个别点处导数为0不影响单调性。只有在某区间内导数恒为0时,相应区间内原函数为常数,一般中学所见函数除分段函数和常函数外不会出现此种情况。例4 已知函数,讨论函数的单调性.分析:讨论单调性就是确
4、定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定的解区间;确定函数的减区间就是确定的解区间;讨论单调性与讨论不等式的解区间相应。小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。例5 已知函数.讨论的单调性;小结:此法是把单调区间讨论化归为导函数符号讨论,而确定导函数符号的分子是常见二次型的,一般要先讨论二次项系数,确定类
5、型及开口;然后由于定义域限制讨论其根是否在定义域内,再讨论两根大小注,结合g(x)的图象确定其在相应区间的符号,得出导函数符号。讨论要点与解含参不等式的讨论相应。三、巩固作业:1. 已知函数,求的单调区间.2.已知函数f(x)=xax+(a1),讨论函数的单调性,求出其单调区间。3. 已知函数()=(1+)-+(0),求()的单调区间. 4、 设,讨论函数的单调性注意:必须问什么答什么,分类讨论最后必须有综述. 1、解:的定义域为 (它与同号)I)当时,恒成立,此时在和都是单调增函数,即的增区间是和;II) 当时 此时在和都是单调增函数,在和都是单调减函数,即的增区间为和;的减区间为和.变式1
6、 解:的定义域为 (它与同号)I)当时,恒成立,此时在为单调增函数,即的增区间为,不存在减区间;II) 当时 ; 此时在为单调增函数,在是单调减函数,即的增区间为;的减区间为.2解:的定义域为 (它与同号)I) 当时,恒成立 (此时没有意义) 此时在为单调增函数,即的增区间为II) 当时,恒成立,(此时不在定义域内,没有意义)此时在为单调增函数,即的增区间为III) 当时, 令于是,当x变化时,的变化情况如下表:(结合g(x)图象定号) x0增减所以, 此时在为单调增函数,在是单调减函数,即的增区间为;的减区间为.变式2解:的定义域为 , 它与同号. 令,当时,无解;当时,(另一根不在定义域内
7、舍去) i)当时,恒成立 (此时没有意义) 此时在为单调增函数,即的增区间为ii)当时,恒成立,(此时 方程判别式,方程无解)此时在为单调增函数,即的增区间为iii) 当时,当x变化时,的变化情况如下表:(结合g(x)图象定号) x0增减所以, 此时在为单调增函数,在是单调减函数,即的增区间为;的减区间为.3解:的定义域为R, I) 当时,在R上单调递减,减区间为R,无增区间。II) 当时,是开口向上的二次函数, 令, 因此可知(结合的图象)i) 当时, 所以此时,的增区间为;的减区间为ii) 当时, 所以此时,的增区间为;的减区间为变式3解:的定义域为R, 是开口向上的二次函数,I) 当时,恒成立所以此时在R上单调递增,增区间为R,无减区间。II) 当时 令 因此可知(结合的图象)与随x变化情况如下表x00增减增 所以此时,的增区间为;的减区间为练习1解: 练习2解: 的定义域为.(1) (2) 若即时,0, 故在单调递增.若00)令,则与同号 (1)当时,在定义域上为增函数 (2) 当时, 当时,g(x)开口向上,图象在x轴上方,所以所以,则在上单调递增 当,此时令,解得由于,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东卷-2025届高考物理4月模拟预测卷(含解析)
- 2025年广东省深圳市南山区蛇口中学中考物理一模试卷(含解析)
- 宜宾市2024-2025学年初三语文试题周练试卷含解析
- 上海行健职业学院《计量文化传播与设计》2023-2024学年第一学期期末试卷
- 湖南省二校联考2025届高三5月考前模拟化学试题含解析
- 辽阳市重点中学2025届高三下第六次模拟考试生物试题含解析
- 西安思源学院《基地社工服务与田野基地建设》2023-2024学年第二学期期末试卷
- 汕头市龙湖区2025年三下数学期末学业质量监测试题含解析
- 内蒙古北重公司第三中学2025年高三下-第二次月考英语试题试卷含解析
- 四川南充市高2025年高三第三次联考(江苏版)语文试题试卷含解析
- 陕西2025年陕西机电职业技术学院招聘21人笔试历年典型考点(频考版试卷)附带答案详解
- 2024年浙江省《辅警招聘考试必刷500题》考试题库必背附答案
- 2025年浙江温州市工业投资集团所属温州快鹿集团公司招聘笔试参考题库附带答案详解
- GB/T 21369-2024火力发电企业能源计量器具配备和管理要求
- 2025年陕煤集团招聘笔试参考题库含答案解析
- 国家级职业资格考试题库管理办法
- 2024-2030年中国审计服务行业竞争格局及投资模式分析报告
- 拍卖师资格考试题库及答案(答案附后面)
- 城市轨道交通安全生产
- Spectrum-2010(根据规范生成设计反应谱)
- 2024年长期照护师职业技能竞赛理论考试题库(含答案)
评论
0/150
提交评论