




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上鳖臑几何体的试题赏析与探究岳 峻1 阮艳艳2 安徽省太和县太和中学 2015年湖北高考数学之后,广大考生感言:阳马、鳖臑,想说爱你不容易;中学教师考后反思:阳马、鳖臑,不说爱你又没道理;试题评价专家说:湖北高考数学试题注重数学本质,突出数学素养,彰显数学文化.阳马、鳖臑是什么呢?1 试题再现图 11.1 文科试题九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图1所示的阳马中,侧棱底面,且,点是的中点,连接(I)证明:平面. 试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请
2、说明理由;(II)记阳马的体积为,四面体的体积为,求的值图21.2 理科试题九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑如图2,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接 (I)证明:平面试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(II)若面与面所成二面角的大小为,求的值2 鳖臑的史料2.1 史料九章算术·商功:“斜解立方,得两堑堵。斜解堑堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣”刘徽注:“此术臑者,背节也,或曰半阳马,
3、其形有似鳖肘,故以名云。中破阳马,得两鳖臑,鳖臑之起数,数同而实据半,故云六而一即得”2.2 阐释阳马和鳖臑是我国古代对一些特殊锥体的称谓,取一长方体,按下图斜割一分为二,得两个一模一样的三棱柱,称为堑堵.图3再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个.以矩形为底,另有一棱与底面垂直的四棱锥,称为阳马.余下的三棱锥是由四个直角三角形组成的四面体,称为鳖臑.图43 试题赏析3.1 生僻字问题试题中出现了中国古代数学巨著九章算术中“阳马”“鳖(be)臑(nào)”的生僻词,但题目中已经对这两个词语的含义进行了现代文解释,从而高考考生对四棱锥所具备的特点能够完全理解,并且也能够
4、知道如何判断四面体是否是鳖臑,因此本题中的生僻字不会对考生解题带来困扰鳖臑,并没闹!3.2 教材溯源PACB图5北京师范大学出版社普通高中课程标准实验教科书数学必修2的“第一章 立体几何初步”的“第六节 垂直关系”的例题1(第37页):如图5所示,在中,点为所在平面外一点,平面。问:四面体中有几个直角三角形?教材借助于这道例题给同学们介绍了鳖臑几何体,并提出思考问题(第38页):PCAB图6仔细观察,你可以从图5中得出几组互相垂直的平面?让同学们更进一步认识这一特殊几何体。教材紧接着在随后的例题2中就给出了以鳖臑为载体的几何命题的证明问题(第38页):如图6,为的直径,所在平面为,于,为上异于
5、,的一点。求证:平面平面。该题借助于鳖臑这一几何体中丰富的垂直关系,让学生来熟悉垂直中的判定定理以及性质定理的应用。3.3 设计理念普通高中数学课程标准中指出:数学是人类文化的重要组成部分,数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学教学应注重体现数学的文化价值,而2015年湖北卷就很恰当的体现了数学文化价值上的考查。命题者将题目的背景取自于古代数学典籍并不意味着试题的难度增大,匠心独运地体现了我国古代数学成果的灿烂辉煌,拓宽了知识面,考查考生的阅读能力、审题能力和应用能力,培养考生的创新精神,注重数学本质,提高数学素养,彰显命题组的博学与智慧尤其是理
6、科第19题、文科第20题,创新于数学史料的加工,以阳马和鳖臑为载体进行命题,来源于教材又囿于教材,彰显数学文化,数学味道正,文化气息浓,让“枯燥”的高考试卷多了几分生气和灵性,给人耳目一新的感觉4 鳖臑几何体的性质的探究图74.1 鳖臑几何体中的垂直关系如图7,鳖臑几何体中,平面,于,于(1)证明:;(2)证明:;(3)证明:;(4)证明:证明 (1)因为平面,平面,所以,又,,所以;(2)因为,平面,所以,又,所以平面,则,又,所以;(3)因为,所以(4)因为,所以平面平面,又,所以平面,则,又,所以,评注 图形中异面直线与的距离等于线段的长度;异面直线与的距离等于线段的长度;4.2 鳖臑几
7、何体中的空间角图8如图8,设为与斜线的夹角,为与斜线在底面的射影的夹角,为与底面所成的角,为二面角的平面角,为直线与平面所成的角,为直线与底面所成的角, 为直线与平面所成的角,则(1);(2);(3);(4);(5).证明 (1);(2);(3);(4);(5)过作于,连接,则平面,.评注 图形中二面角的平面角的大小等于,二面角的平面角的大小等于,二面角的平面角的大小等于;直线与平面所成的角为,直线与平面所成的角为,直线与平面所成的角为,直线与平面所成的角为,直线与平面所成的角为.5 鳖臑几何体模型的应用5.1 2015湖北真题评析图 9例1 (同1.1 文科试题)解析 (I)因为底面,所以,
8、由底面为长方形,有,而,所以. 而平面,所以. 又因为,点是的中点,所以. 而,所以平面.由平面,平面,可知四面体的四个面都是直角三角形,即四面体是一个鳖臑,其四个面的直角分别是,.(II)因为底面,是阳马的高,又点是的中点,则点到底面的距离为的,图10由于,所以例2 (同1.2 理科试题)解析 (I)同例1 证明平面.而平面,所以平面平面.而平面平面,所以平面.由平面,平面,可知四面体的四个面都是直角三角形,即四面体是一个鳖臑,其四个面的直角分别为.(II)因为平面,底面,则平面与平面所成二面角的平面角即为与所成的角,不妨设,则,在中, ,故5.2 鳖臑在手,横扫立体几何试题鳖臑几何体不仅覆
9、盖了立体几何中点、线、面的各种位置关系,以及各种空间角的计算,又突出了“垂直”这个横贯立体几何知识的“红线”,因此,鳖臑几何体是探求空间中线线、线面、面面垂直关系的十分重要的基本图形,也是研究棱锥、棱台的基本模型。图11例3 已知在内,于,于,求证:在的平分线上(即)解析 因为,由三垂线定理逆定理知:,因为,所以,则,又因为,所以,故图12评注 经过一个角的顶点引这个角所在平面的斜线,如果斜线与这个角两边夹角相等,那么斜线在平面上的射影是这个角的平分线所在直线本题图形中的三棱锥就是鳖臑几何体,显然,这个三棱锥中蕴含着棱锥、棱台的所有要素。例4 (2015新课标I)如图12,四边形为菱形,为与交
10、点,平面.(1)证明:平面平面;(2)若,三棱锥的体积为,求该三棱锥的侧面积.解析 (1)因为四边形为菱形,所以,又平面,所以几何体是鳖臑,由鳖臑几何体的垂直关系性质1可知平面,又平面,所以平面平面.(2) 因为,所以,因为三棱锥的体积为,所以鳖臑几何体的体积为.设,则,,图13所以的体积为,所以,所以的面积为,的面积与的面积均为.故三棱锥的侧面积为.例5 (2015新课标)如图13,长方体中, , ,点,分别在上,过点,的平面与此长方体的面相交,交线围成一个正方形图14Q(I)在图中画出这个正方形(不必说出画法和理由);(II)求直线与平面所成角的正弦值.解析 (I)交线围成的正方形如图14
11、. (II)如图14,作于,则,;因为四边形为正方形,所以,于是,所以.作于,连接,则三棱锥就是鳖臑几何体,其中就是与平面所成角,设由鳖臑几何体的性质,则,图15又,则,故与平面所成角的正弦值为.例6 (2015山东)如图15,在三棱台中,分别为,的中点(1)求证:平面;(2)若平面, ,求平面与平面所成的角(锐角)的大小 解析 (1)略.(2)由,分别为,的中点,所以,因为,所以,又平面,所以几何体是鳖臑几何体;假设平面与平面所成的角为,则由鳖臑几何体的性质可知:,又,所以,故平面与平面所成的角(锐角)为6 结束语除此之外,在2015年的高考题中还有很多以鳖臑这一几何体为背景的立体几何问题,限于篇幅,忍痛割爱,不再赘述。命题者之所以对鳖臑这一几何体如此青
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 潍坊食品科技职业学院《生理学中医方法论医学哲学》2023-2024学年第二学期期末试卷
- 新疆农业大学《城市交通管理》2023-2024学年第二学期期末试卷
- 武汉市汉阳区重点中学2024-2025学年初三下学期期末生物试题理试题含解析
- 矿物加工厂安全生产与事故预防考核试卷
- 矿产勘查中的地质公园建设与保护考核试卷
- 白酒与传统文化产业的结合与创新模式探讨考核试卷
- 社交媒体与全球文化传播考核试卷
- 矿石提炼工艺的经济效益分析考核试卷
- 物联网在零售行业的应用考核试卷
- 林木育种与森林碳汇能力提升考核试卷
- 2025年全国普通话水平测试15套复习题库及答案
- 2024年天津医科大学眼科医院自主招聘考试真题
- 土木工程毕业论文-居民住宅楼的施工组织方案设计
- 组织内的有效沟通报联商
- 2025年肺心病的护理试题及答案
- 航空航天行业工程师求职简历
- 爱护牙齿-儿童保健课件
- 拒绝间歇性努力不做45度青年-“拒绝躺平”主题班会-2024-2025学年初中主题班会课件
- 第10课 古代的村落、集镇和城市课件(共20张)2024-2025学年高二历史统编版选择性必修二
- 公交行车安全指导书
- 2025年中航货运航空有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论