数字信号处理英文影印版课件4-1_图文_第1页
数字信号处理英文影印版课件4-1_图文_第2页
数字信号处理英文影印版课件4-1_图文_第3页
数字信号处理英文影印版课件4-1_图文_第4页
数字信号处理英文影印版课件4-1_图文_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数字信号处理Digital Signal Processing 电子信息工程系韩建峰KeywordsSectionsSampling sinusoidsSampling theoremDiscrete-to-Continuous Conversion Summary LECTURE 1Reading assignments This lecture Chapter 4Section 4-1 KeywordsPart AContinuous-to-Discrete Conversion Sampling & ReconstructionAliasing & Folding LEC

2、TURE OBJECTIVES SAMPLING can cause ALIASING Spectrum for digital signals,x nNormalized Frequency22+=ss f f T ALIASING Review SignalsSampling Reconstruction Continuous-time SignalBut the key point is that any computer represent ation is discrete.So, do sampling!And, how?(cos(x t A t=+ Sample a contin

3、uous-time signal at equally spaced time instants.Take a “snapshot” every Ts.Speech, audio andso on. Or, compute the values of a discrete-time signal directly from a formula.2=-+53x n n n SAMPLING x(tSAMPLING PROCESSConvert x(t to numbers xn“n” is an integer; xn is a sequence ofvaluesThink of “n” as

4、the storage address inmemoryUNIFORM SAMPLING at t = nTsIDEAL: xn = x(nTs SAMPLING RATE, f s SAMPLING RATE (fsf=1/T ssNUMBER of SAMPLES PER SECOND T= 125 microsec f s= 8000 samples/secsUNITS ARE HERTZ: 8000 Hz UNIFORM SAMPLING at t = nT= n/f ssIDEAL: xn = x(nT=x(n/f ss Examples of continuous-time sig

5、nals exist in the “real-world” outside the computer.Simple mathematical formula.More general continuous-time signals can be represented as sum of sinusoids.So, we will use sinusoidal signal as the basis for our study of sampling. sf s T n A n x =+=cos(cos(cos(+=+=s s nT A nT x n x t A t x Change x(t

6、 into xn DERIV ATIONcos(+=n T A n x s DEFINE DIGITAL FREQUENCYDigital Frequency V ARIES from 0to 2, as f varies from 0 to the sampling frequencyUNITS are radians, not rad/secDIGITAL FREQUENCY is NORMALIZEDss f f T 2= Sample RateHow to select theT sSample Theorem A interesting phenomenonExercise 4.1I

7、s this the only possible answer?Hz 1000at sampled 2400cos(2=s f t t x 21000cos(2400cos(2.4cos(0.42cos(0.4nx n n n n n =+=(cos(400x t t =Aliasingcos(0.4x n n = Illustration of aliasingDifferent frequency, but same values at n=0,1,2,32.4is an alias of 0.4Exercise 4.2 AliasingHow does aliasing arise in

8、 a mathematical treat ment of discrete-time signal?The last example:12cos(0.4cos(2.4x n n x n n =2cos(0.42cos(0.4x n n n n =+=Periodic function with period 2Aliasing Derivation-1and we substitute: t n f sIf x (t =A cos(2(f + f s t +then: x n =A cos(2(f + f s n f s +or, x n =A cos(2f f s n +2 n + Ali

9、asing Derivation-22s sf T f = +2 2(22then: s s s s s f f f f f f f +=+ and we want: cos(x n A n =+If x (t =A cos(2(f + f s t +t n f s Folded Aliasx (t =A cos(2(-f + f s t -SAME DIGITAL SIGNAL cos(x n A n =+x n =A cos(2f T s n -2 n +x n =A cos(-2fT s n +(2 f s T s n - x n =x (nT s =A cos(2(-f + f s n

10、T s - Aliasing2s s f T f = +2 22s s f T f =-+ Folded Alias AlisingPrincipal Aliasing, 2, 2 integer l l l +-=General Formula Spectrum of a Discrete-Time SignalPLOT versus NORMALIZED FREQUENCY INCLUDE ALL SPECTRUM LINES ALIASESADD MULTIPLES of 2SUBTRACT MULTIPLES of 2FOLDED ALIASESALIASES of NEGATIVE

11、FREQS SPECTRUM (Aliasing Case12X *0.512X 1.512X 0.5 2.52.512X 12X *12X *1.580/(100(2cos(+=n A n x 80s f Hz =sf f 2= SPECTRUM (Folding Case2sf f =f s =125Hz 12X *0.412X 0.4 1.61.612X 12X *125/(100(2cos(+=n A n x DEMO: Strobe Movies 12What is the meaning of this DEMO?Can you give us more examples in the real world? f Camera: 30 Frames/s Human Eyessf'f Summary2s s f T f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论