下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 变化率与导数及导数应用知识归纳:变化率与导数1.函数平均变化率对于函数y=f(x),当自变量x由x1变化到x2时,其函数y=f(x)的函数值由f(x1)变化到f(x2),它的平均变化率为,把自变量的变化x2-x1称作自变量的改变量,记作,函数值的变化f(x2)-f(x1)称作函数值的改变量,记作y,函数的平均变化率就可以表示为函数值的改变量与自变量的改变量之比,即。2. 导数设函数y=f(x),1、 函数的单调性与导数的关系1.在某个区间内,如果,那么函数在这个区间内单调递 增;如果,那么函数在这个区间内单调递减说明:特别的,如果,那么函数在这个区间内是常函数2.求解函数单调区间的步骤:(1
2、)确定函数的定义域;(2)求导数;(3)解不等式,解集在定义域内的部分为增区间;(4)解不等式,解集在定义域内的部分为减区间3、对于可导函数来说,是在某个区间上为增函数的充分 非必要条件,是在某个区间上为减函数的充分非必要条件。 已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解二、函数极大值、极小值1、极大值:如果是函数f(x)在某个开区间上的最大值点,即不等式 对一切成立,就说函数f(x)在处取到极大值,并称为函数f(x)的一个极大值点,为f(x)的一个极大值。 2、极小值
3、:如果是函数f(x)在某个开区间上的最小值点,即不等式 对一切成立,就说函数f(x)在处取到极小值,并称为函数f(x)的一个极小值点,为f(x)的一个极小值。 3、极大值与极小值统称为极值 ,极大值点与极小值点统称为极值点;若,则叫做函数f(x)的驻点;可导函数的极值点必为驻点,但驻点不一定是极值点。4、判别f(c)是极大、极小值的方法:若满足,且在c的两侧的导数异号,则c是的极值点,是极值,并且如果在c两侧满足“左正右负”,则c是的极大值点,是极大值;如果在c两侧满足“左负右正”,则c是的极小值点,是极小值5、求可导函数f(x)的极值的步骤: (1)确定函数的定义域,求导数f(x) (2)求
4、f(x)的驻点,即求方程f(x)=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f(x)在这个根处无极值三、 函数的最大值和最小值在区间a,b上连续的函数f在a,b上必有最大值与最小值。求闭区间上连续的函数的最大值和最小值的思想方法和步骤:(1)求函数在(a,b)内的极值;(2)求函数在区间端点的值(a)、(b);(3)将函数 的各极值与(a)、(b)比较,其中最大的是最大值,其中最小的
5、是最小值。疑难点、易错点剖析1由极值的定义可知,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。此外请注意以下几点:()极值是一个局部概念。由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小()函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个()极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而 ()函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。(V)可
6、导函数的极值点的导数为0,但是导数为0的点不一定是极值点,如函数y=x3在x=0处导数为0,但x=0不是极值点。(Vi)函数在一点x0处有极值,不一定在该点可导。如函数y=|x| 在x=0有极小值,但在x=0处不可导即导数不存在。2.对于函数的最值问题,应注意以下几点:(1)在闭区间上图像连续不断的函数在上必有最大值与最小值(2)在开区间内图像连续的函数不一定有最大值与最小值如函数在内连续,但没有最大值与最小值;(3)函数的最值是比较整个定义域内的函数值得出的;而函数的极值是比较极值点附近函数值得出的(4)函数在闭区间上的图像连续不断,是在闭区间上有最大值与最小值的充分条件而非必要条件如函数在上有最大值,最小值,(最大值是0,最小值是-2),但其图像却不是连续不断的(如右图)。(5)函数在其定义区间上的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度厨卫间防水装修合同
- 2024年无人驾驶汽车项目资金申请报告代可行性研究报告
- 2024年度影视制作合同:电视剧集制作、发行及版权转让协议2篇
- 二零二四年度咨询服务合同标的和责任
- 2024年度市场推广合同:互联网营销推广合作协议
- 2024年溶剂油行业政策分析:溶剂油行业标准加强产品质量监督
- 二零二四年度商业代理的授权协议3篇
- 2024年度洛阳房屋租赁合同样本
- 2024年度城市轨道交通设备购置及维护合同3篇
- 二零二四年度智能语音识别技术研发及应用合作协议3篇
- 2024年度★电商平台入驻协议
- 中小学营养餐家长参与方案
- 《财务基础知识培训》课件
- 抖音带货主播小白培训
- 2024秋期河南开放大学本科《公司法律实务(本)》一平台无纸化考试(形考任务1至3+我要考试)试题及答案
- 国家开放大学《实-用管理基础》形考任务1-4参考答案
- 2024黑龙江省交通投资集团招聘38人高频难、易错点500题模拟试题附带答案详解
- 1.2 歌曲《落雨大》课件(13张内嵌音视频)
- 全国行业职业技能竞赛(电力交易员)考试题及答案
- 养生滋补炖品店策划方案
- 新版《铁道概论》考试复习试题库(含答案)
评论
0/150
提交评论