版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元二次方程复习导学案课前小测试、若关于的方程有增根,则的值是()321、一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是()A.3B.1C.3D.2、关于的一元二次方程的两个实数根分别是,且,则的值是( )A1 B12C13 D254、设,是一元二次方程的两个实数根,则的值为_5、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率设平均每次降价的百分率为,可列方程为 6、学校组织一次有关世博的知识竞赛共有20道题,每小题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对 题.7、已知关于的一元二次方程(为常数)(1)求证:方程有两个不相等的实
2、数根; (2)设,为方程的两个实数根,且,试求出方程的两个实数根和的值8、“五一”黄金周期间,某学校计划组织385名师生租车旅游;现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元,若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金,请你帮助该学校选择一种最节省的租车方案。一、知识点梳理:一元二次方程概念: 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式:,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系
3、数;bx叫做一次项,b叫做一次项系数;c叫做常数项。一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,当b<0时,方程没有实数根。2、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程的求根公式:公式法的步
4、骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4、因式分解法(注意十字相乘法)因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式一元二次方程根的判别式 根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即I当>0时,一元二次方程有2个不相等的实数根;II当=0时,一元二次方程有2个相同的实数根;III当<0时,一元二次
5、方程没有实数根一元二次方程根与系数的关系 、如果方程的两个实数根为,那么。如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。一元二次方程应用题经典题型一、解应用题步骤:1审题;2设未知数,包括直接设未知数和间接设未知数两种;3找。找等量关系;4. 列方程;5解。解方程;6验。判断解是否符合题意;7答。写出正确的解(审设找列解验答)1、 商品销售问题 售价进价=利润 单价×销售量=销售额 一件商品的利润×销售量=总利润1、某商店购进一种商品,进价3
6、0元试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2、某玩具厂计划生产一种玩具熊猫,每日最高产量为只,且每日产出的产品全部售出,已知生产只熊猫的成本为(元),售价每只为(元),且、与x的关系式分别为R=500+30X,P=1702X。() 当日产量为多少时每日获得的利润为元?() 若可获得的最大利润为元,问日产量应为多少?2、 行程问题 路程=速度*时间 相遇路程=速度和*相遇时间 追及问题=速度差*追及时间 顺水速度=船速(静水中的速度)+ 水流速度
7、 逆流速度=船速(静水中的速度)水流速度 1、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速. 2、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自前进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员重新会合,经过了多少时间。三、工程问题工作总量=工作效率*工作时
8、间 把工作总量看做单位“1”,工作效率看做“1/工作天数”1、为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米? 2、某公司需在一个月(31天)内完成新建办公楼的装修工程如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成(1)求甲、乙两工程队单独完成此项工程所需的天数(2)如果请甲工程队施工,公司每日需付费用2
9、000元;如果请乙队施工,公司每日需付费用1400元在规定时间内:A请甲队单独完成此项工程B请乙队单独完成此项工程;C请甲、乙两队合作完成此项工程以上三种方案哪一种花钱最少? 四、面积问题相对来说这类问题比较简单 熟记主要的几个图形面积计算公式 1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. 2、如图,在一块长35M,宽26M的矩形地面上,修剪同样宽的两条互相垂直的道路,(两条道
10、路与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850M²,道路的宽应为多少?5、 动点问题 搞清题意,在运动过程当中的常量和变量,以及它们之间的关系,Rt满足勾股定理1、已知:如图3-9-3所示,在中,.点从点开始沿边向点以1cm/s的速度移动,点从点开始沿边向点以2cm/s的速度移动.(1) 如果分别从同时出发,那么几秒后,的面积等于4cm2?(2) 如果分别从同时出发,那么几秒后,的长度等于5cm?(3) 在(1)中,的面积能否等于7cm2?说明理由.2、如图,在矩形ABCD中,AB=6CM,BC=12CM,点P从点A出发,沿AB边向点B以1cm/s的速度移动;点
11、Q从点B出发,沿BC边向点C以2cm/s的速度移动,P,Q两点同时出发,分别到点B,C后停止移动,设PQD的面积为S,点移动的时间为X(X>0)。 (1)求S关于X的函数解析试及自变量X的取值范围 (2)经过多少时间,PQD的面积最小 6、 数字问题1、两位数,十位上数字与个位上数字之和为5;把十位上的数字与个位上数字互换后再乘以原数得736,求原来两位数2、 有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。二、常见类型(一)平均率问题 a(1±x)n
12、0; =b1、某房屋开发公司经过几年的不懈努力,开发建设住宅面积由2000年4万平方米,到2002年的7万平方米。设这两年该房屋开发公司开发建设住宅面积的年平均增长率为x ,则可列方程为_;2、美化城市,改善人们的居住环境已成为城市建设的一项重要内容某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示)(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为 公顷,比2000年底增加了 公顷;在1999年,2000年,2001年这三年中, 绿地面积增加最多的是 年;(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到726公顷,试
13、求今明两年绿地面积的年平均增长率(二)面积问题1、如图121,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?2、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?练习:1、在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是,求金色纸边的宽为多少?2、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的
14、长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.(三)行程问题:1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇。问甲、乙的速度各是多少?2、甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米练习:1、甲
15、、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈?2、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.(四)工程问题:(工作效率X工作时间=工作总量)1、为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了
16、20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米?练习:1、某公司需在一个月(31天)内完成新建办公楼的装修工程如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成(1)求甲、乙两工程队单独完成此项工程所需的天数(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元在规定时间内:A请甲队单独完成此项工程出B请乙队单独完成此项工程;C请甲、乙两队合作完成此项工程以上三种方案哪一种花钱最少?(5) 商
17、品销售问题: (售价进价=利润;一件商品的利润×销售量=总利润;单价×销售量=销售额)1、某商店以2400元购进某种盒装茶叶,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶在整个买卖过程中盈利350元,求每盒茶叶的进价2、百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应
18、降价多少元?练习:1、某书店老板去批发市场购买某种图书,第一次购用100元,按该书定价2.8元现售,并快售完由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5元,用去了150元,所购数量比第一次多10本当这批书售出时,出现滞销,便以定价的5折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?,若赚钱,赚多少?(六)数字问题:1、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。练习:1、有一个两位数,它的十位上的数字比个位上的数
19、字小2,十位上的数字与个位上的数字之和的 3倍刚好等于这个两位数。求这个两位数。(七)动态几何:1、已知:如图3-9-3所示,在中,.点从点开始沿边向点以1cm/s的速度移动,点从点开始沿边向点以2cm/s的速度移动.(1)如果分别从同时出发,那么几秒后,的面积等于4cm2?(2)如果分别从同时出发,那么几秒后,的长度等于5cm?(3)在(1)中,的面积能否等于7cm2?说明理由.(八)趣味问题1、参加一次聚会的每两人都握了一次手,所有人共握手66次,有多少人参加聚会?2、小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,求这个小组人数。练习:1、种植物的主干长出若干数目的支干,每个支
20、干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?作业一1、宏欣机械厂生产某种型号的鼓风机,一月至六月份的产量如下:月 份一二三四五六产量(台)505148505249(1) 求上半年鼓风机月产量和平均数、中位数;(2) 由于改进了生产技术,计划八月份生产鼓风机72台,与上半年月产量平均数相比,七、八月鼓风机生产量平均每月的增长率是多少?2、 王红梅同学将100元压岁钱第一次按一年定期储蓄存入银行,到期后将本金和利息取出,并用掉了50元,剩下的有全部按一年定期存入,这时存款的年利率已下降到第一次存款年利率的的一半,这样到期后可得本金和利息共63元,求第一次存款时的年利率是多少?3、甲、乙两人分别骑车从A,B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进。乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度。4、一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标,竞标资料显示:若两队合作6天可完成,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度摩托车借用与赛事赛事推广合同2篇
- 二零二五年专业水电维修与安装分包合同书3篇
- 2025年度特色民宿租赁管理合同模板3篇
- 2024年网络安全防护系统建设施工劳务合同
- 二零二五年度二套房房产抵押贷款合同3篇
- 2025年度古建筑修复承包合同解除协议书3篇
- 2025年度房屋无偿赠与与社区公益基金合同3篇
- 二零二五年度房地产买卖居间合同(含广告宣传)3篇
- 二零二五年度新型城镇化建设项目劳务承包合同3篇
- 二零二五年度手车购车协议书及二手车交易市场租赁合同2篇
- 《外盘期货常识》课件
- 【MOOC】土力学-西安交通大学 中国大学慕课MOOC答案
- 医院医保科工作总结
- 2024-2025学年译林版八年级英语上学期重点词汇短语句子归纳【考点清单】
- 广东省六校联考2024-2025学年高二上学期12月月考英语试题
- 养老护理员技能培训的标准化实施方案
- 2024年企业采购部年终总结及今后计划(3篇)
- 物业客服个人述职报告范例
- 数据岗位招聘笔试题与参考答案2024年
- 2024年展览主场服务合同
- 工厂铣工安全培训课件
评论
0/150
提交评论