


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数的整除(1)性质、特征、奇偶性【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或 差(a- b)也能被c整除。(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数 a必能被数c整除。(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它 们的积也能被这个数整除。(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能 被这两个互质数的积整除。 反之,若一个数能被两个互质数的积整除, 那么这个数能分别被这两个互质数整除。整除特征:(1)若一个数的末两位数能被 4 (或25)整除,则这个数 能被4 (或25)整除。(2) 若一个数的末三位数能
2、被 8 (或125)整除,则这个数能被8 (或 125)整除。(3) 若一个数的各位数字之和能被 3 (或9)整除,则这个数能被 3 (或9)整除。(4 )若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的 数之差(大数减小数)能被 7 (或13)整除,贝V这个数能被7 (或13) 整除。奇偶性:(1)奇数土奇数二偶数(2)偶数土偶数二偶数(3)奇数土偶 数二奇数(4)奇数X奇数二奇数(5)偶数X偶数二偶数(6)奇数X偶数二偶数(7)奇数一奇数二奇数(8)【典型例题】例1:一个三位数能被 3整除,
3、去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2: 1200这200个自然数中,能被6或8整除的数共有多少个?例3:任意取出1998个连续自然数,它们的总和是奇数还是偶数?例4 :有“ 1 ”,“ 2”,“ 3”,“ 4”四卡片,每次取出三组成三位数,其中偶数有多少个?例皈口果41位数芳庁口眇卡能被7整除,那么中间方格内的数字杲几彳【精英班】2D不20人【竞赛班】例6:某市举办小学生数学竞赛, 共20道题,评分标准是: 答对一题给5分,不答一题给1分,答错一题倒扣1分,如果1999人 参赛,问参赛同学的总分是奇数还是偶数?【课后分层练习】1、判断 306371A组:入
4、门级能否被7整除?能否被13整除?2、abcabc能否被7、11和13整除?3、六位数7E36F5 是1375的倍数,求这个六位数。4、已知10口 8971能被13整除,求 中的数7个学生向后转,最A代表多少?5、有8个学生都面向南站成一排,每次只有少要做多少次才能使 8个学生都面向北?B组:进阶级1、有一个四位数3AA1,它能被9整除,那么数2、一个一百位数由 1个1, 2个2, 3个3, 4个4, 5个5, 6个6, 7 个乙及72个0组成,问这个百位自然数有可能是完全平方数吗?3、某市举办小学生数学竞赛, 共30道题,评分标准是:基础分15分, 答对一题给5分,不答一题给1分,答错一题倒
5、扣1分,如果199人 参赛,问参赛同学的总分是奇数还是偶数?4、已知10口8971能被13整除,求中的数。C组:挑战级1、能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除?2、对于左下表,每次使其中的任意两个数减去或加上同一个数,能否 经过若干次后(各次减去或加上的数可以不同),变为右下表?为什么?123n573gi100011'3、左下图是一套房子的平面图,图中的方格代表房间,每个房间 都有通向任何一个邻室的门。有人想从某个房间开始,依次不重 复地走遍每一个房间,他的想法能实现吗?【典型例题】例1: 一个三位数能被 3整除,去掉它的末尾数后,所得的两位数是17的
6、倍数,这样的三位数中,最大是几?解:在两位数中,是17的倍数的数中最大的为17X 5=85( 17X 6=102). 于是所求数的前两位数字为 85.因为8+5=13,故所求数的个位数字为2、5、8时,该数能被3整除,为使该数最大,其个位数字应为8最大三位数是858.例2: 1200这200个自然数中,能被6或8整除的数共有多少个?解:1200中,能被6整除的数共有33个(200-6=33),能被8整除的数共有 25 个(200- 8=25) 但6, 8 =24, 200- 24=88,即1200中,有8个数既被6整除,又被8整除。故总共有:33+25-8=50。例3 :任意取出1998个连续
7、自然数,它们的总和是奇数还是偶数?解:任意取出的1998个连续自然数,其中奇数、偶数各占一半,即999个奇数和999个偶数。999个奇数的和是奇数,999个偶数的和是偶数,奇数加上偶数和为奇数,所以它们的和是奇数。例4 :有“ 1”,“2”,“ 3”,“4”四卡片,每次取出三组成三位数,其 中偶数有多少个?解:组成的三位数个位数字只能是 2或4两种情况,若个位数字是 2, 百位、十位数字可从余下的数字中取,这样可组成 3X 2=6 (个)三位 偶数;若个位数字是 4同样也可以组成6个三位偶数。这样总共 12 个。例5如果41位数护?罗9能植7整陳,那么中间方格内的数字是几?【精英班】- 1 解
8、:根据能被7整除的数的特征,555555与999999都能被7整除,所以幻乍与999也能被7整除。h *#匕” 土18 牛184"5口9勺X芳500M0 99十少口99) WW-*72*7220才2E b节曲因为上式中等号左边的数与等号右边第一个数都能被7整除,所以等号右边第二个数也能被7整除,推知55口99能被7整除。根据能被7整除的数 的特征,口 99-55=口44也应能被7整除。由口 44能被7整除, 易知应是6。【竞赛班】例6:某市举办小学生数学竞赛,共 20道题,评分标准是:答 对一题给5分,不答一题给1分,答错一题倒扣1分,如果1999人参赛, 问参赛同学的总分是奇数还是
9、偶数?解:对于每个学生来说,20道题都答对,共得5X 20=100分(偶数)。若该 学生答错一题,应从100分中扣(5+仁6)分,无论他答错多少道题,扣分 的总数应是6的倍数,即扣分的总数也是偶数,100分中扣除偶数分仍得偶 数分;同样若他不答一题,应从 100分中扣除(5-仁4)分,无论他不答 多少道题,扣分的总数应是 4的倍数,即扣分的总数也是偶数,所以100分中减去偶数仍得偶数,每个学生得分数是偶数,那么无论有多少人参加数学竞赛,学生得分的总数和一定是偶数。【课后分层练习】A组:入门级1、判断306371能否被7整除?能否被13整除?解:因为371-306=65, 65是13的倍数,不是
10、7的倍数,所以306371能被 13整除,不能被7整除。2、abcabc能否被7、11和13整除?分祈与給 因Slabcabc = abcX 1001, 1001是了,11和13的倍数,所以巫赢能被7】1和13整躺3、六位数7E36F5是1375的倍数,求这个六位数。解:因为1375=5X 5X 5X 11=125X 11,根据能被125整除数的特征,这个数的末三位能被125整除,可知道F=2,又因为这个数是11的倍 数,所以7+3+2 (E+6+5)= 1-E是11的倍数,那么E=1.所以这个 六位数是713625.4、已知10口 897能被13整除,求中的数。解:10口8-971= 100
11、8- 971+口 0=37+口 0。上式的个位数是 乙若是13的倍数,则必是13的9倍,由13X9-37=80,推知中的数是85、有8个学生都面向南站成一排,每次只有 7个学生向后转,最少要 做多少次才能使8个学生都面向北?解:对于每个人只要向后转奇数次,就能面向北。由于每一轮恰有7个学生向后转,8个学生向后转的次数总和为 7 X 8=56 (次)。因此最 少要做56- 7=8 (次)才能使8个学生都面向北。B组:进阶级1、有一个四位数 3AA1,它能被9整除,那么数A代表多少?解:3+A+A+1=4+2A,根据能被9整除数的特征,4+2A是9的倍数。 因为4+2A是偶数,所以4+2A=18
12、, A=7.2、 一个一百位数由 1个1, 2个2, 3个3, 4个4, 5个5, 6个6, 7 个乙及72个0组成,问这个百位自然数有可能是完全平方数吗?解:任何一个自然数的平方除以 3都余1或0而这个一百位数的数字 和是140, 140除以3余2,所以这个一百位数不可能是完全平方数。3、某市举办小学生数学竞赛, 共30道题,评分标准是:基础分15分, 答对一题给5分,不答一题给1分,答错一题倒扣1分,如果199人 参赛,问参赛同学的总分是奇数还是偶数?解:仿照例6:这199位同学的得分总分是奇数。4、已知10口8971能被13整除,求中的数。解:10口8-971= 1008- 971+口
13、0=37+口 0。上式的个位数是 乙若是13的倍数,则必是13的9倍,由13X9-37=80,推知中的数是8C组:挑战级1、能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除? 解:10个数排成一行的方法很多,逐一试验显然行不通。我们采用反 证法。假设题目的要求能实现。那么由题意,从前到后每两个数一组 共有5组,每组的两数之和都能被 3整除,推知110的和也应能被 3整除。实际上,110的和等于55,不能被3整除。这个矛盾说明 假设不成立,所以题目的要求不能实现。2、对于左下表,每次使其中的任意两个数减去或加上同一个数,能否 经过若干次后(各次减去或加上的数可以不同),变为右下表?为什同一个数,所以表中九个数码的总和经过变化后,等于原来的总和加 上或减去那个数的2倍,因此总和的奇偶性没有改变。原来九个数的 总和为1+2+9=45,是奇数,经过若干次变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长沙医学院《高等数学Ⅰ(下)》2023-2024学年第一学期期末试卷
- 2025年陕西省商洛市洛南县重点名校初三下学期第一次月考试题化学试题试卷含解析
- 遵义师范学院《经典译著赏析》2023-2024学年第二学期期末试卷
- 德阳农业科技职业学院《国际新闻作品案例解析》2023-2024学年第二学期期末试卷
- 二甲护理条款解读
- 广西贵港市覃塘区重点名校2025年高中毕业班第二次模拟(英语试题文)试卷含答案
- 2025届山东省泰安一中、宁阳一中高三第四次月考(物理试题理)试题含解析
- 海南省琼海市嘉积中心校2024-2025学年三年级数学第二学期期末联考试题含解析
- 2025年青海省玉树州高三4月“圆梦之旅”(九)生物试题含解析
- 2025年厦门市重点中学高三第二次教学质量检查考试物理试题试卷含解析
- 高中英语语法课件-状语从句(共40张)
- 粤教粤科版科学六年级下册全册单元检测卷 含答案
- 物种起源少儿彩绘版
- 人才培养方案企业调研
- 第6课《求助电话》课件
- 旅游业品牌塑造与形象传播策略
- 单片机恒压供水系统设计
- 《冠心病的中医防治》课件
- 数据中心建设项目可行性研究报告
- 【高新技术企业所得税税务筹划探析案例:以科大讯飞为例13000字(论文)】
- 口中有异味中医巧辨治
评论
0/150
提交评论