版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中考数学压轴题函数直角三角形问题1、如图1,已知抛物线yx2bxc与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,3),对称轴是直线x1,直线BC与抛物线的对称轴交于点D(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限当线段时,求tanCED的值;当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答思路解析:1第(1)、(2)题用待定系数法求解析式,它们的结果直接影响后续的解题2第(3)题的关键是求点E的
2、坐标,反复用到数形结合,注意y轴负半轴上的点的纵坐标的符号与线段长的关系3根据C、D的坐标,可以知道直角三角形CDE是等腰直角三角形,这样写点E的坐标就简单了具体解法:(1)设抛物线的函数表达式为,代入点C(0,3),得所以抛物线的函数表达式为(2)由,知A(1,0),B(3,0)设直线BC的函数表达式为,代入点B(3,0)和点C(0,3),得 解得,所以直线BC的函数表达式为(3)因为AB4,所以因为P、Q关于直线x1对称,所以点P的横坐标为于是得到点P的坐标为,点F的坐标为所以,进而得到,点E的坐标为直线BC:与抛物线的对称轴x1的交点D的坐标为(1,2)过点D作DHy轴,垂足为H在RtE
3、DH中,DH1,所以tanCED,2、在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上(1)求点B的坐标;(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得EDPE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动)当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动)过Q作x轴的垂线,与直线
4、AB交于点F,延长QF到点M,使得FMQF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动)若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值图1思路点拨1这个题目最大的障碍,莫过于无图了2把图形中的始终不变的等量线段罗列出来,用含有t的式子表示这些线段的长3点C的坐标始终可以表示为(3t,2t),代入抛物线的解析式就可以计算此刻OP的长4当两个等腰直角三角形有边共线时,会产生新的等腰直角三角形,列关于t的方程就可以求解了具体解答(1) 因为抛物线经过原点,所以 解得,(舍去)因此所以点B的坐标为(2,4)(2) 如图4,设
5、OP的长为t,那么PE2t,EC2t,点C的坐标为(3t, 2t)当点C落在抛物线上时,解得如图1,当两条斜边PD与QM在同一条直线上时,点P、Q重合此时3t10解得如图2,当两条直角边PC与MN在同一条直线上,PQN是等腰直角三角形,PQPE此时解得如图3,当两条直角边DC与QN在同一条直线上,PQC是等腰直角三角形,PQPD此时解得 3如图1,已知A、B是线段MN上的两点,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设(1)求x的取值范围;(2)若ABC为直角三角形,求x的值;(3)探究:ABC的最大面积?图1思路点拨1根据三角形的两边之和大于
6、第三边,两边之差小于第三边列关于x的不等式组,可以求得x的取值范围2分类讨论直角三角形ABC,根据勾股定理列方程,根据根的情况确定直角三角形的存在性3把ABC的面积S的问题,转化为S2的问题AB边上的高CD要根据位置关系分类讨论,分CD在三角形内部和外部两种情况具体解答(1)在ABC中,所以 解得(2)若AC为斜边,则,即,此方程无实根若AB为斜边,则,解得,满足若BC为斜边,则,解得,满足因此当或时,ABC是直角三角形(3)在ABC中,作于D,设,ABC的面积为S,则如图2,若点D在线段AB上,则移项,得两边平方,得整理,得两边平方,得整理,得所以()当时(满足),取最大值,从而S取最大值
7、图2 图3如图3,若点D在线段MA上,则同理可得,()易知此时综合得,ABC的最大面积为4、如图1,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0)(1)试说明ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度当其中一个动点到达终点时,他们都停止运动设M运动t秒时,MON的面积为S 求S与t的函数关系式; 设点M在线段OB上运动时,是否存在S4的情形?若存在,求出对应的t值;若不存在请说明理由;在运动过程中,当MON为直角三角形时,求t的值图1思路点拨1第(1)题说明ABC是等腰三角形,暗示了两个动点M
8、、N同时出发,同时到达终点2不论M在AO上还是在OB上,用含有t的式子表示OM边上的高都是相同的,用含有t的式子表示OM要分类讨论3将S4代入对应的函数解析式,解关于t的方程4分类讨论MON为直角三角形,不存在ONM90°的可能具体解答(1)直线与x轴的交点为B(3,0)、与y轴的交点C(0,4)RtBOC中,OB3,OC4,所以BC5点A的坐标是(-2,0),所以BA5因此BCBA,所以ABC是等腰三角形(2)如图2,图3,过点N作NHAB,垂足为H在RtBNH中,BNt,所以如图2,当M在AO上时,OM2t,此时定义域为0t2如图3,当M在OB上时,OMt2,此时定义域为2t5
9、图2 图3把S4代入,得解得,(舍去负值)因此,当点M在线段OB上运动时,存在S4的情形,此时如图4,当OMN90°时,在RtBNM中,BNt,BM ,所以解得如图5,当OMN90°时,N与C重合,不存在ONM90°的可能所以,当或者时,MON为直角三角形 图4 图55、已知RtABC中,有一个圆心角为,半径的长等于的扇形绕点C旋转,且直线CE,CF分别与直线交于点M,N(1)当扇形绕点C在的内部旋转时,如图1,求证:;思路点拨:考虑符合勾股定理的形式,需转化为在直角三角形中解决可将沿直线对折,得,连,只需证,就可以了请你完成证明过程(2)当扇形CEF绕点C旋转至图2的位置时,关系式是否仍然成立?若成立,请证明;若不成立,请说明理由 图1 图2思路点拨1本题的证明思路是构造ACMDCM,证明BCNDCN2证明BCNDCN的关键是证明3证明的结论是勾股定理的形式,基本思路是把三条线段AM、BN、MN集中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产代理服务协议书
- 金融行业合同信息管理方案
- 安全管理午托服务协议书
- 住宅小区预制管桩施工合同
- 开启海外征程:2025-2030年传统手工艺制作工作坊行业跨境出海战略研究报告
- 2017年Q3机油电商数据报告
- 学生读书矫正仪产品入市调查研究报告
- 染发剂产品入市调查研究报告
- 滑雪用手套市场洞察报告
- 修枝刀市场洞察报告
- 如何提高医务人员的个人防护装备使用效率
- 公共服务质量评价指标体系
- 2023中国智慧手术室发展与实践白皮书
- 江西省2023年高等职业院校单独招生考试-江西电力职业技术学院-样卷
- 《热力学基础 》课件
- 完整版体检中心应急预案
- 无人机培训教材
- 人教版必修四苏武传3课时课件
- 六年级《牵手两代-第二讲-乖孩子为什么会厌学》家长课程培训
- 医院项目设计阶段的造价控制重点及难点(含指标清单、费用明细、选材清单)
- 体育概论 第五章体育科学课件
评论
0/150
提交评论