(完整word版)幂法求多项式方程的模最大根matlab实现_第1页
(完整word版)幂法求多项式方程的模最大根matlab实现_第2页
(完整word版)幂法求多项式方程的模最大根matlab实现_第3页
(完整word版)幂法求多项式方程的模最大根matlab实现_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、幕法求多项式方程的模最大根matlab实现要求:利用 matlab编写通用子程序,利用幕法求多项式方程的解:f (x) = xn an(Xn1 ax a0 = 0思想:i首先要将多项式转化成矩阵形式。通过老师上课讲的内容。将上述多项式转化成为如家格 式的矩阵:0 - a。1 - a?01 -an此矩阵的特征值,就是上述多项式的解。2幕法的思想就不多介绍了,书上讲的很详细,主要运用书上6.2.6的迭代公式:yk = Auk,A二m(k),yk的模最大分量Uk 二 y, %,实验代码:详见附录 i实验结果:(代码详见附录)(i) x3 x2 -5x 3 = 0» jRj Xj s=pov

2、erjnethod(3J a, le-5)m =-3. OOOQ-0. 40820. 8165-0. 40S2其中m是模最大特征值,x是m对应的特征向量,s是迭代次数15。精度为1e-5 (ii) x3 -3x -仁 0结果:>> nij * s =powermethod (3 a3 】亡一5)n =1. 87940.24250.85650.455757其中:m是模最大特征值(多项式模最大根),x是m对应的特征向量,s是迭代次数为57, 精度为1e-5./.、X8 +101x7 +208.01x° +10891.01x5+9802.08x4 (iii)+ 79108.9x

3、-99902x2 +790x-1000 = 0结果:>> ji? x7 s=poweruiethod(8J a, le-10)m =-100* 0000-Q.0Q780.0062-0, 77550. S2JS0,06990,08380. ooos0.000812其中:m是模最大特征值(多项式模最大根),x是m对应的特征向量,s是迭代次数 次,精度为1e-10.结论:幕法求多项式模最大根的效果还是很不错的,迭代次数也不多,收敛比较快。附录1幂法:fun ctio nm,x,s=powermethod( n,a,eps) %A转化后的矩阵%x0迭代初向量 %l模最大特征值%n为最咼次幕

4、A=zeros (n);M = 500000;%v为主特征向量%迭代步数限制l = 0;for i=1: nA(i, n)=-a(i);endfor i=2: nfor j=1:n-1if i-j=1A(i,j)=1;endendends=0;n=max(size(A);u=ones(n ,1);y=o nes( n,1);%初始化,初始值是多少不重要beta 仁0;eta=no rm(u,2);y=u./eta;u=A*y;beta2=y'*u;while s<=Mif abs(beta2-beta1)/beta1)>epsbeta1=beta2;eta=no rm(u,2);y=u./eta;u=A*y;beta2=y'*u;ends=s+1;if (abs(beta2-beta1)/beta

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论