圆周运动的动力学问题_第1页
圆周运动的动力学问题_第2页
圆周运动的动力学问题_第3页
圆周运动的动力学问题_第4页
圆周运动的动力学问题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题:圆周运动的动力学问题教学目的:1。理解掌握向心力的来源及圆周运动的动力学问题是牛顿定律的具体应用2.掌握圆周运动的动力学问题处理方法。重点、难点:圆周运动的动力学问题的处理方法教学方法:讲练结合 教学过程、描述匀速圆周运动线速度方向改变快慢的物理量J大小:a向心加速度-方向:总是指向圆心,时刻在变化(a是一个变加速度)注意:a与r是成正比还是反比,要看前提条件,若3相同,a与r成正比;若v相同,a与r成反比。二、质点做匀速圆周运动的条件:质点具有初速度,并且始终受到跟线速度方 向垂直,时刻指向圆心,大小恒定的合外力(即向心力)的作用。向心力2大小:Fm2r mar方向:总是指向圆心,时刻

2、在变化(F是一个变力)作用:产生向心加速度,只改变速度的方向,不改变速度的大小,因注意:(1)由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向 心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力。(2) 个物体不论在哪个平面内做匀速圆周运动,其合外力在任何时刻必指向圆心,且大小不变。42rT2(3)向心力不是和重力、弹力、摩擦力相并列的一种类型的力,是根据力的效果命名的在分析做圆周运动的质点受力情况时, 切不可在物体的相互作用力(重力、弹力摩擦力、万有引力)以外再添加一个向心力。二、一般的圆周运动(非匀速圆周运动)速度的大小有变化,向心力和向心加速度的大小也随着变化,禾I用公

3、式求圆周上某一点或某一时刻的向心力和向心加速度的大小,必须用该点的瞬时速度值。重点分析:1、力的合力或分力都可以作为向心力,如下表所示:向心力不是一种特殊的 力,重力(引力)、弹力、摩擦力等每种力以及这些匀速圆周运动实例向心力人造卫星绕地球运动重力(或引力)光滑桌面上用线拴一小球匀速转动线中弹力(或重力、支持力、弹力的合力)随着唱片匀速转动的物体静摩擦力(或重力、支持力、静摩擦力的合力)圆锥摆运动重力和弹力的合力(或重力的分力)2、Fn=ma仅是牛顿第二定律在匀速圆周运动中的应用,也就是说,匀速圆周运动同样遵循牛顿运动定律,匀速圆周运动的瞬时特性可以与一个匀加速 直线运动相对应,如下表所示:典

4、型例题解析【例1】在一个水平转台上放有AB C三个物体,它们跟台面间的摩擦因数 相同,A的质量为2m B c各为m A、B离转轴均为r、c为2r,贝UA、 若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大B、 若A、B、C三物体随转台一起转动未发生滑动,B把受的摩擦力最小C、当转台转速增加时,C最先发生滑动D当转台转速继续增加时,A比B先滑动【解析】A、B C三物体随转台一起转动时,它们的角速度都等于转台的角速 度,设为3,根据向心加速度的公式a2r已知 A=rBrc, 把以三物体向心加 速度的大小关系为aA=aBrA=rB,所以,当转台的转速逐渐增加时,物体C最先发生滑动

5、,转速继续增加时,物体A、B将同时发生滑动,C正确,D错答:B、C【例2】如图4-11所示,一罢长为I的单摆,摆球的质量为m要使摆球能在竖直平面内做完整圆周运动,那么摆球在最低点的速度Vo至少为多少【解析】小球在最高点的受力情况如图4-12所示,由牛顿第二2定律得:T mg m,由于m、I一定,所以V越小,T就越小,当T=0时,小球具有不脱离轨的最小速度,从最高点到最 低点过程中,小球机械能守恒,解出最低点的速度V0。2由小球在最高点时,最小速度V,因此得:mg m(1)从最高点到最低点,小球机械能守恒,. 1212有:mg ?2I mv mv0(2)2 2由(1) (2)得乂的最小值为V。5

6、glv评析:(1)如果把原题中的绳去掉而改为与轨道相同的一圆环,使小球沿环内 侧做圆周运动,由同样的分析方法可知,小球在最高点不脱离轨道的最小速度 仍为vRg。(2)若把原题中的绳换为细杆,由于杆对球即可施以支持力又可施以拉力, 所以小球在最高点的合外力最小可以为零,因此,小球在最高点的速度最小可 等于零。而v ,gl则变成了小球受弹力方向变化的临界值,即v gl时球受 向上的弹力;当vgl时,球和杆无相互作用;当vgl时,球受向下的弹(3)如果将原题中的细强去掉,而在竖直面内置一圆管,使小球在圆管内做 圆周运动或者在竖直面内置一穿有小球的光滑环,使小球沿环做圆周运动。在 最高点各临界值与(2

7、)中完全类似。【例3】如图4-13光滑的水平桌面上钉有两枚铁钉A、B相距Lo=,长L=1m的柔软细线一端栓在A上,另一端拴住一个质量为500g的小球,小球的初始位置在AB连线上A的一侧。把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动,由 于钉子B的存,使细线逐步缠在AB上,若细线能承受的最大拉力T=7N,则 从开始运动到细线断裂的时间为多少【解析】小球转动时,由于细线逐步绕在 A、B 两钉上,小球的转动半径逐渐变小,但小球 转动的线速度大小不变。由小球交替地绕 A、B 作匀速圆周运动,因线速度不变,随着转动半径的减小,线中强力T 不断增大,每转半圈的时间 t 不断减小。在

8、第一个半圆内T,ti2如果题中的细线始终不会断裂, 有举的同学还可计算一下, 从小球开始运动到细线绕完在AB 两钉子上,共需多少时间【例 4】如图 4-14 所示,在电动机上距水平轴 0 为 r 处固定一个质量为 m 的铁块, 电动机启动后达到稳定状态时,以角速度做匀速圆周运动,则在转动过程中,电 动机对地面的最大压力与最小压力的数值之差为多少【解析】电动机匀速转动时,铁块在竖直平面内以角速度3做半径为 铁块做匀速率圆周运动的向心力是由铁块重力及电动机对它的作用力的合力提供的, 理解,当铁块在最低点时,电动机对铁块的作用力最大;当铁块到最高点时,电动机对铁块的作用力最小,所以当铁块运动到最代点

9、时,电动机对地面的压力最大;铁块运动到最 高点时,电动机对地面的压力最小。故铁块在最低点及最高点时受力分析如图4-15 所示,必须说明的是,图中Ni 的方向是假设的,对铁块运用牛顿第二定律得: 最高点mg N1m2r2最低点N2mg m r在第二个半圆内T2vm ,(l lo)t2(I I。)v在第三个半圆内T32vm(l 2lo)t3(I 21。)在第 n个半圆内Tn2v ml (n 1)lotnI (n 1)loTn=Tm=7N,得 n=8.t tit2tn-nl 12 3 v(n 1)lonlvn(n 1)lo8.2s【评析】圆周运动的显著特点是它的周期性。通过对运动规律的研究,用递推法则写出解答结果的通式(一般表达式)有很重要的意义,对本题,还应熟练掌握数列求和方法。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论