下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品文档称重传感器的选型要求发布时间:2009-9-27称重传感器的选型应根据应用情况入手,从传感器支撑点的数量、量程、精度等级、环境适应性等几个方 面进行选择。称重传感器量程的选择根据经验,一般应使传感器工作在其 30 %70 %量程内,但对于一些在使用过程中存在较大冲击力的衡器,如动态轨道衡、动态汽车衡、钢材秤等,在选用称重传感器时,一般要扩大其量程,使传 感器工作在其量程的20 %40 %之内,使传感器的称量储备量增大,以保证传感器的使用安全和寿命,避 免超载。按照使用到额定量程 6070 %的建议,假设传感器个数为 N,单只传感器量程为 m,料仓自重加上满料重 量的总重为,则在已知M和
2、N的情况下,按如下公式计算 m :M V m V M0.7*N f m ' 0W*N确定此范围后,在传感器规格里面选择最满足此范围的传感器即可。称重传感器精度等级的选择对称重传感器等级的选择必须满足下列两个条件:A、要满足仪表输入的要求。称重仪表是对传感器tq的输出信号经过放大A/ D转换等处理之后显示称量结果的。因此,称重传感器的输出信号必须大于或等于仪表要求的输入灵敏度值,即将传感器的输出灵敏度代入传感器和仪表的匹配公式:三仪表输入灵敏度蘇瞬大闺X N传®B个數IB債®g输出凳敏廈)xE敕朋电血国 xDf显示分®向计算结果须大于或等于仪表要求的输入灵敏
3、度。精品文档B、要满足整台电子秤准确度的要求。一台电子秤主要是由秤体、 传感器、 仪表三部分组成 ,在对传感器准确度选择的时候,应使传感器的准确度略高于理论计算值,因为理论往往受到客观条件的限制,如 秤体的强度差一点,仪表的性能不是很好、秤的工作环境比较恶劣等因素都直接影响到秤的准确度要求, 因此要从各方面提高要求,又要考虑经济效益,确保达到目的。环境适应性选择用于称重系统中的传感器,一般都要长期工作在各种复杂的环境中,经受温度、湿度、粉尘、腐蚀等的考验,故必须事先对传感器密封型式做出较合理的选择。应考虑以下几点:注意工作温度范围:对于高温环境下工作的传感器常采用耐高温传感器;另外,苛刻的场合
4、还须加有隔热、 水冷或风冷等装置。选择适当的密封形式: 粉尘、湿热对传感器造成较大的影响。应选择适当密封形式的传感器,并且在安装时注意避免粉尘、湿热 对传感器的影响。选择适当的材质:在酸、碱等腐蚀性较高的环境下,应选择抗腐蚀性能好的不锈钢材质且密闭性好的传感器。选择防爆型:在易燃、易爆环境下工作的传感器对防爆性能提出了更高的要求,故必须选用防爆传感器, 出头的防水、防潮、防爆性等。注意电缆线引称重传感器的工作原理发布时间: 2009-9-26称重传感器是称重、计量系统中的基础元件,用于感知重量信号并将重量信号转换为 次仪表或上位机系统进行进一步处理,传感器的正确选型和使用,是非常关键的,直接影
5、响计量系统的精 度和可靠性。mV 电压信号,由二称重传感器的起源和发展1938 年美国加利福尼亚理工学院教授 E.Simmons (西蒙斯)和麻省理工学院教授 A.Ruge (鲁奇)分别同 时研制出纸基丝绕式电阻应变计,以他们名字的字头和各有二位助手命名为 SR-4 型,由美国 BLH 公司专 利生产。为研制应变式负荷传感器奠定了理论和物质基础。1940 年美国 BLH 公司和 Revere 公司总工程师 A.Thurston (瑟斯顿)利用 SR 一 4 型电阻应变计研制出 圆柱结构的应变式负荷传感器,用于工程测力和称重计量,成为应变式负荷传感器的创始者。1942 年在美国应变式负荷传感器已
6、经大量生产,至今已有 60 多年的历史。称重传感器的发展经历了 70 年代的切应力负荷传感器和铝合金小量程负荷传感器两大技术突破; 80 年代 称重传感器与测力传感器彻底分离, 制定 R60 国际建议和研发出数字式智能称重传感器两项重大变革; 年代在结构设计和制造工艺中不断纳入高新技术迎接新挑战,使称重传感器技术得到极大的发展。90称重传感器的工作原理 电阻应变式称重传感器的工作原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在 他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减 小),再经相应的测量电路把这一电阻变化转换为电信号( m
7、V 电压),从而完成了将外力变换为电信号 的过程。称重传感器常用术语解释灵敏度:加额定载荷或无载荷时,传感器输出信号的差值。单位用mV/V 表示。综合误差:依据 OIML R60 ,精度等级(国内一般为 C3 级,分度数 3000 ), ±%F.S 额定输出。重复性:在相同环境条件下,对传感器反复加载到额定载荷并卸载,在加载过程中同一负荷点上输出点的 最大差值对额定输出的百分比。滞后:从无载荷逐渐加载到额定载荷然后再逐渐卸载,在同一载荷点上加载和卸载输出量的最大差值对额 定输出值的百分比。非线性:由空载荷的输出值和额定载荷时的输出值所决定的直线和增加负荷之实测曲线之间最大偏差对额 定
8、输出值的百分比。蠕变:在相同条件下,对传感器反复加载到额定载荷并卸载,在加载过程中同一负荷点上输出值的最大差 值对额定输出的百分比。零点输出:又叫零点平衡,指在推荐电压激励下,未加载荷时传感器的输出值对额定输出的百分比。温度补偿范围:传感器在此温度范围内使用其零点及输出均满足相应的技术指标。工作温度范围:传感器在此温度范围内使用其任何性能参数均不会产生永久性有害变化。零点输出温度系数:环境温度的变化弓起的零平衡变化,一般以温度每变化 对额定输出的百分比表示。10 c时,弓I起的零平衡变化量额定输出温度系数: 环境温度的变化弓起的额定输出变化, 一般以温度每变化 10时,弓起的额定输出变化 量对
9、额定输出的百分比表示。输入电阻:信号输出端开路,传感器未加负荷时,从电源激励输入端测得的阻抗值。输出电阻:电源激励输入端开路,传感器未加负荷时,从信号输出端测得的阻抗值。绝缘电阻:传感器的电路和弹性体之间的直流阻抗值。安全过载:可以施加于传感器的最大负荷,此时传感器在性能特征上不会产生超出规定值的永久性漂移。极限过载:可以施加于传感器,且不会造成传感器结构永久性损坏的最大负荷。什么是称重传感器?以及如何选择称重传感器?发布时间: 2011-1-11称重传感器是一种能够将重力转变为电信号的力-电转换装置,是电子衡器的一个关键部件。能够实现力 - 电转换的传感器有多种,常见的有电阻应变式、 电磁力
10、式和电容式而绝大多数衡器产品 所用等。电磁力式主要用于电子天平,电容式用于部分电子吊秤,的还是 电阻应变式称重传感器 。电阻应变式称重传感器结构较简单,准确度高,适用面广,且能够在相对比较差的环境下使用。因此 电阻应变式称重传感器在衡器中得到了广泛地运用电阻应变式称重传感器主要是由弹性体、电阻应变片和补偿电路组成。弹性体是称重传感器的受力元件,由优质合金钢或优质铝型材制成。电阻应变片是由金属箔材腐蚀成栅格形制成,四个电阻应变片以电桥的结构方式粘在弹性体上。在没有受力的情况下, 电桥的四只电阻的阻值是相等的 ,电桥处于平衡状态,输出为零。在弹性体受力发生变形时,电阻应变片也跟着一道变形。在弹性体
11、受力弯曲 的过程中,有两个应变片受拉,金属丝变长,电阻值增加;另两片受压,电阻值减小。这样就导致原来平 衡的电桥失衡,在电桥的两端产生了电压差,这个电压差与弹性体受力的大小成正比,检测这个电压差, 就可以得到传感器所受重力的大小,这个电压信号经过仪表检测后然计算后,就可以得到相应的重量值。为了适用各种衡器结构的安装需要,称重传感器做成了各种各样的结构形式,传感器的名称往往也按照其外形称呼。如 桥式传感器 (主要用于汽车衡) 、悬臂梁式 (地上衡、料斗秤、汽车衡) 、柱式(汽车衡、 料斗秤) 、箱式(台秤) 传感器可供选择,如果传感器选择得当,对于衡器性能的提 高是很有帮助的。S 型(料斗秤)等
12、。种衡器承载体往往有多种结构形式的电阻应变式称重传感器的规格很多,小到几百克大到几百吨。在选择称重传感器量程的时候,要根据所用 衡器的最大秤量来确定,其经验公式为:传感器总载荷(单个传感器的最大允许载荷X 传感器个数)=1/22/3 衡器的最大秤量A 级传感器的要求最称重传感器准确度等级分为 A,B, C,D 四个级别。不同级别有不同的误差范围。 高。等级后面的数字表示检定分度值,数字越大,传感器质量越好。例如: C2 表示 C 级, 2000 个检定 分度值;C5表示C级,5000个检定分度值。显然 C5要高于C2。传感器常用的级别为 C3 , C5级,这两种级别的传感器可用于制作准确度等级
13、为III 级的电子称重传感器的误差主要是由非线性误差、滞后误差、重复性误差、蠕变、零点温度附加误差以及额定输出 温度附加误差等引起的。近年出现的数字传感器,把 A/D 转换电路和 CPU 电路放到了传感器里面,传感器输出的就不再是模拟电 压信号,而是经过处理的重量数字信号,这样做带来了以下几个优点:1仪表可以分别采集每个数字传感器的信号,并通过线性方程式运算,对每一个传感器进行单独标定,这 就使得一次性完成四角误差修正成为可能。 而使用模拟式传感器的衡器中最头疼的问题就是四角误差修正, 往往要反复多次地调校才能达到要求,而每一次调校都是要将沉重的砝码搬来搬去,既费时又费力。方便2由于仪表可以检
14、测到每一个传感器的信号, 所以任何一个传感器出现问题都可以从仪表上观察到, 检修和维护工作。3数字传感器用 485 接口传送数字信号,传输距离远,且可以免受干扰。克服了模拟信号远传困难和易 受到干扰的问题。4数字传感器内部可以通过微处理器对传感器的各项误差进行修正,使得输出的传感器数据更加准确。称重传感器被喻为电子衡器的神经系统,它的性能在很大程度上决定了电子衡器的准确度和稳定性。在设 计电子衡器时,经常要遇到如何选用传感器的问题。称重传感器实际上是一种将质量信号转变为可测量的 电信号输出的装置。用传感器首先要考虑传感器所处的实际工作环境,这点对正确选用传感器至关重要, 它关系到传感器能否正常
15、工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。环境给传感器造成的影响主要有以下几个方面: (1)高温环境对传感器造成涂覆材料熔化、焊点开化、弹性体内应力发生结构变化等问题。对于高温环境 下工作的传感器常采用耐高温传感器;另外,必须加有隔热、水冷或气冷等装置。(2)粉尘、潮湿对传感器造成短路的影响。在此环境条件下应选用密闭性很高的传感器。不同的传感器其 密封的方式是不同的,其密闭性存在着很大差异。常见的密封有密封胶充填或涂覆;橡胶垫机械紧固密封;焊接(氩弧焊、等离子束焊)和抽真空充氮密封。 从密封效果来看,焊接密封为最佳,充填涂覆密封胶为量差。对于室内干净、干燥环境下工作的传感器,
16、可选择涂胶密封的传感器,而对于一些在潮湿、粉尘性较高的环境下工作的传感器,应选择膜片热套密封 或膜片焊接密封、抽真空充氮的传感器。( 3 )在腐蚀性较高的环境下,如潮湿、酸性对传感器造成弹性体受损或产生短路等影响,应选择外表面进 行过喷塑或不锈钢外罩,抗腐蚀性能好且密闭性好的传感器。(4)电磁场对传感器输出紊乱信号的影响。在此情况下,应对传感器的屏蔽性进行严格检查,看其是否具 有良好的抗电磁能力。(5)易燃、易爆不仅对传感器造成彻底性的损害,而且还给其它设备和人身安全造成很大的威胁。因此, 在易燃、易爆环境下工作的传感器对防爆性能提出了更高的要求:在易燃、易爆环境下必须选用防爆传感 器,这种传
17、感器的密封外罩不仅要考虑其密闭性,还要考虑到防爆强度,以及电缆线引出头的防水、防潮、 防爆性等。其次对传感器数量和量程的选择: 传感器数量的选择是根据电子衡器的用途、秤体需要支撑的点数(支撑点数应根据使秤体几何重心和实际 重心重合的原则而确定)而定。一般来说,秤体有几个支撑点就选用几只传感器,但是对于一些特殊的秤 体如电子吊钩秤就只能采用一个传感器,一些机电结合秤就应根据实际情况来确定选用传感器的个数。传感器量程的选择可依据秤的最大称量值、选用传感器的个数、秤体的自重、可能产生的最大偏载及动载 等因素综合评价来确定。一般来说,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越 高。但
18、在实际使用时,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击 等载荷,因此选用传感器量程时,要考虑诸多方面的因素,保证传感器的安全和寿命。传感器量程的计算公式是在充分考虑到影响秤体的各个因素后,经过大量的实验而确定的。公式如下:C = K-0K-1K-2K-3(Wmax+ W)/NC 单个传感器的额定量程;W秤体自重;Wmax 被称物体净重的最大值;N 秤体所采用支撑点的数 量;K-0 保险系数,一般取值在 1.21.3之间人;K-1 冲击系数;K-2 秤体的重心偏移系数; K-3 风压系数。例如:一台30t电子汽车衡,最大称量是30t,秤体自重为1.9t,采用四只传
19、感器,根据当时的实际情况,选取保险系数K-0 = 1.25,冲击系数K-1 = 1.18,重心偏移系数 K-2 = 1.03,风压系数K-3 = 1.02,试确 定传感器的吨位。解:根据传感器量程计算公式:C = K-0K-1K-2K-3(Wmax + W) /N可知:C = 1.25 X1.18 X1.03 X1.02 X ( 30 + 1.9)/ 4 = 12.36t因此,可选用量程为 15t 的传感器(传感器的吨位一般只有10T、15T、20t、25t、30t、40t、50t 等,除非特殊订做)。根据经验,一般应使称重传感器工作在其30%70%量程内,但对于一些在使用过程中存在较大冲击力
20、的衡器,如动态轨道衡、动态汽车衡、钢材秤等,在选用传感器时,一般要扩大其量程,使传感器工作在其 量程的20%30%之内,使传感器的称量储备量增大,以保证称重传感器的使用安全和寿命。再次,要考虑各种类型传感器的适用范围。传感器型式的选择主要取决于称量的类型和安装空间,保证安装合适,称量安全可靠;另一方面,要考虑 厂家的建议。厂家一般会根据传感器的受力情况、性能指标、安装形式、结构型式、弹性体的材质等特点 规定传感器的适用范围,譬如铝式悬臂梁传感器适用于计价秤、平台秤、案秤等;钢式悬臂梁传感器适用 于料斗秤、电子皮带秤、分选秤等;钢质桥式传感器适用于轨道衡、汽车衡、天车秤等;柱式传感器适用 于汽车
21、衡、动态轨道衡、大吨位料斗秤等。最后,还要对传感器准确度等级进行选择。传感器的准确度等级包括传感器的非线形、蠕变、蠕变恢复、滞后、重复性、灵敏度等技术指标。在选用 传感器的时候,不要单纯追求高等级的传感器,而既要考虑满足电子秤的准确度要求,又要考虑其成本。对传感器等级的选择必须满足下列两个条件:A D 转换1.满足仪表输入的要求。称重显示仪表是对称重传感器的输出信号经过放大、等处理之后显示称量结果的。因此,称重传感器的输出信号必须大于或等于仪表要求的输入情号大小,即将称重传感器的输出灵敏度代入传感器和仪表的匹配公式,计算结须大于或等于仪表要求的输入灵敏度。称重传感器和仪表的匹配公式:称重传感器
22、输出灵敏度 *激励电源电压 *秤的最大称量秤的分度数 *传感器的个数 *传感器量程例如:一称量为 25kg 的定量包装秤, 最大分度数为 1000 个分度;秤体采用 3 只 LBE25 型传感器,量程为 25kg ,灵敏度为2.0 ±).008mV / V,拱桥电压力12V ;秤采用AD4325 仪表。问采用的传感器能否与仪表匹配。解:经查阅,AD4325仪表的输入灵敏度为 0.6叮/d,因此根据称重传感器和仪表的匹配公式可得仪表的实际输入信号为:2X12X25/ 1000X 3X25 = 8V/d > 0.6 卩/d 所以,采用的称重传感器满足仪表输入灵敏度的要求,能够 与所
23、选仪表匹配。2.满足整台电子秤准确度的要求。一台电子秤主要是由秤体、传感器、仪表三部分组成,在对称重传感器 准确度选择的时候,应使称重传感器的准确度略高于理论计算值,因为理论往往受到客观条件的限制,如 秤体的强度差一点,仪表的性能不是很好、秤的工作环境比较恶劣等因素都直接影响到秤的准确度要求, 因此要从各方面提高要求,又要考虑经济效益,确保达到目的。Thames side 称重传感器:350i 称重传感器: 300 , 500 , 1000 ,2000 ,3000 , 5000kg;VC3500 称重传感器: 2,5,10,15,20,30,50,75,100,150,200kg;T66 称重
24、传感器: 10,20,50,100,200kg;T61 称重传感器: 100kg2000kg;T30LA 称重传感器: 500kg30,000kg;LA66 称重传感器: 10,20,50,100,200kg;T93 称重传感器:500kg30 , 000kg;T95 称重传感器: 2000,5000,10000,20000kh;Mastermount 称重传感器: 2,000kg30,000kg;levelmount 称重传感器: 10,20, 50,100,200,300,500,1000,2000,3000,5000kg;料斗秤系列:LC6100 称重传感器: 0.5,1,2,3,5,7
25、.5,10,15,20,25(T) ;LC7100 称重传感器: 0.05,0.1,0.2,0.3,0.5,0.8,1,1.5,2,3,4(T) ;大量程系列(可选高温型):LC1100 称重传感器:LC1100M 称重模块:10,20,25,40,50,60,75klb)LC1200称重传感器:LC1300称重传感器:LC1400称重传感器:LC2100称重传感器:LC2100M 称重模块:10,20,25,40,50,60,7510,15,20,30,40,50,6020,30,40,1,2,3,5,10,15,20,10,15,20,klb)t);50(t);10,15,25,30,25
26、,30,20,40,40,25,30,40(t);50(t);50(T);LC2200 称重传感器:10,20,30,50,100,150 , 200,300,400 (t);LC8200 称重传感器:1,2.2,4.7,10,15 ,22,35 , 47 , 65,100 (t);皮带秤传感器:LC3100 称重传感器:5,10,20,30,40,50,75 , 100,150,200,250,300,500kg);单点传感器:LC5200 称重传感器:0.2,0.3,0.6,1,2,3,6 ( kg);LC5300 称重传感器:5,7.5,10,15,20,25,30,45,60,100k
27、g);LC5400 称重传感器:50,60,100,150,200,250,300,350kg);氧枪张力传感器:LC7300 测力传感器:2,3,5,10,15,20,30 ( t);测力传感器:LC4200测力传感器:200,500,1000 ,2000 , 3000kg);LC4400测力传感器:50,100,200,500lb1,3,5,7.5,10klb,100(kg) ;LC4600测力传感器:50,100 ,200 ,300,400,500 (kg);LC4700测力传感器:10,20,50,100 , 200 , 500,1000,2000 (kg );LC8100测力传感器:
28、3,5,10,20,30 (T) ;LC9300测力传感器:500 ,1250 ,2500,5000 ,12500 ,25000 (N);LC9400测力传感器:1,2.5,4.5,10,15 ,20,35 , 45 , 65,100 (T);LC9500测力传感器:0 0.5,1,2,5,10 , 20,50,100 ( Nm);LC9600测力传感器:0.2, 0.5,1,2,5,10,20,50,100,200,500,1000,2000, 5000 ( Nm ) ;传感器附件:推拉力计 :PF-2,PF-5,PF-10,PF-20,PF-50,PF-100,PF-200,PF-500;
29、接线盒 :JB-2, JB-3,JB-4,JB-6,JB-8( 可选防爆型 ) ;信号模拟器 :CL-SI,CL-SII;称重变送器技术参数及术语的解释分度间距:指显示间距与倍数之比例,分度间距数值只能选择以下数值1 , 2, 5 中的某一个。显示间距:指显示器上相连两个读数之间的差值,亦称为分度值。激励电压:指由称重显示器提供用以驱动电阻应变式传感器的电压。电阻应变式传感器:电阻应变式传感器是一种将受力或重量转换成电压的部件。每个电阻应变式传感器包 俗称弹性体。第二部分是可根据弹性体括两个部分第一部分是根据所受力大小而线性变形的金属部件 的变形大小而改变其电阻的应变片。电阻应变式称重变送器输
30、出比率:指从电阴应变式传感器输出的电压与激励电压的比率,亦称该电阻应变 式,传感器的输出灵敏度,用 mV/V 表示。最大量程:指为显示器设计(略去小数点后)可显示的最大数值。分度值:每一分刻度所对应的重量值。分辨率:指称重变送器(重量变送器)的最大量程与显示间距之比例。自重:指承载器本身的重量使电阻应变式传感器产生的输出电压。秤量间距:指称重显示装置对秤的承载器上的单位标准重量变化所显示之数值,也即俗称的量程。皮重:包装物、秤台、秤斗的重量。净重:被测物料的重量。毛重:包装秤及物料的总重量。去皮:将秤台秤斗的重量作为 0 ,即使衡器不加载荷时的重量称为去皮。落差(重量):控制衡器的加料机构在加
31、料时,物料连续不断地落入秤斗或秤台,一旦加料器停止,由于 惯性及及高度差有些物料会随后进入秤内,这部份物料的重量就是落差。为了除去落差,可在设置值中扣 去落差重量,提前发出称量到达的指令。分段投料提前量:为了保证加料速度和投料精度,在许多情况下衡器采用双速或多速投料,二者之间差值 称为速差或大小投料提前量。本信息来源于互联网,其内容并不代表本公司观点,仅供对称重变送器知识的学习使用。电子皮带秤工作原理发布时间: 2010-12-6电子皮带秤就是专门针对散装物料的连续计量而设计的。它也是根据杠杆原理,在连续运行的皮带下面安 装杠杆装置,杠杆的承载面则是几个滚筒装置,用来满足皮带在上面走过时减小皮
32、带与承载面的磨擦而造 成的计量误差。同时计量部分也甩掉了传统的秤砣装置,而采用利用应变电阻制造的称重传感器来进行计 量。皮带上面的物料通过杠杆装置的承载面时,会对承载面产生一定的压力,通过杠杆装置将该压力传送到称 重传感器,而控制装置将称重传感器感应的重量压力信号进行放大处理后,以数字的方式进行显示。同时 可以对显示的数字信号进行外部人为控制,使计量皮带秤按人们实际要求的喂料量自动改变皮带的速度快 慢,对给定喂料量进行跟踪,从而形成皮带上料多时,速度变慢,料少时速度变快,无料时速度最快,而 超载时最慢甚至会停下来的控制特性。但皮带上面无料时速度最快也不是无限制的快速,皮带电机也不能直接带动皮带
33、运转。所以,不同的物料 喂料量,会采用不同的减速机构来控制皮带的最快速度,改变变速比也就改变了不同物料计量皮带秤的满 量程的范围。(常见的为滚轮皮带秤 )对放置在皮带上并随皮带连续通过的松散物料进行自动称量的衡器。主要有机械式 和电子式两大类。滚轮皮带秤 由重力传递系统、滚轮、计数器和速度盘组成。速度盘转速正比于皮带速度。滚轮滚动的角速 度正比于皮带上通过的物料量。滚轮在速度盘上滚动的位置由物料的重力大小来调整。当皮带上没有物料 时,滚轮靠近速度盘中心,转速为零,计数器不累计;当皮带上有物料时,滚轮随着重力变大向周边移动, 并带动计数器记下皮带上通过的物料总量。电子皮带秤使用最广泛的皮带秤。由
34、承重装置、称重传感器、速度传感器和称重显示器组成。称重时,承重装置将皮带上物料的重力传递到称重传感器上,称重传感器即输出正比于物料重力的电压 (mV) 信号,经 放大器放大后送模数转换器变成数字量A ,送到运算器;物料速度输入速度传感器后,速度传感器即输出脉冲数B,也送到运算器;运算器对 A、B进行运算后,即得到这一测量周期的物料量。对每一测量周期进行累计,即可得到皮带上连续通过的物料总量。4 种。双杠杆多托辊电子皮带秤承重装置的秤架结构主要有双杠杆多托辊式、单托辊式、悬臂式和悬浮式式和悬浮式秤架的电子皮带秤计量段较长,一般为28组托辊,计量准确度高,适用于流量较大、 计量准确度要求高的地方。
35、单托辊式和悬臂式秤架的电子皮带秤的皮带速度可由制造厂确定,适用于流量较小的 地方或控制流量配料用的地方。电子皮带秤有累计和瞬时流量显示,具有自动调零、半自动调零、自检故障、数字标定、流量控制、打印 等功能。皮带秤,称重显示器等组成,能对固体物料进行计量托辊检测到皮带机上的物料重量通过杠杆作速度传感器直接连在大直径测速滚筒上,提供一电子皮带秤,由秤架,测速传感器,高精度称重传感器, 连续动态计量。计量皮带秤工作原理: 计量皮带秤称重桥架安装于输送机架上,当物料经过时, 用于称重传感器,产生一个正比于皮带载荷的电压信号。系列脉冲,每个脉冲表示一个皮带运动单元,脉冲的频率正比于皮带速度。称重仪表从称
36、重传感器和速度传感器接收信号,通过积分运算得出一个瞬时流量值和累积重量值,并分别显示出来。单托辊计量皮带秤主要技术参数:单托辊皮带秤精度: +/-0.5%系统精度±0.125%称量范围0 8000t/h皮带宽度5002400mm皮带速度04m/s远传传输1000m皮带输送机倾角:010°工作条件和安装条件:环境温度:机械:-20 C+50 C仪表:0C40C电源电压:220V (+10 %、-15 %) 50Hz± 2 %UNI800 防干扰专家论述 工业称重仪表抗干扰与处理搅拌系统复杂工况的要求发布时间: 2007-8-24前言 作为工业自动化核心部件的称重仪表
37、,不同于商用衡器,往往面临更复杂的工况。对于拌和站电磁环境比 较恶劣的情况下,一些大规模集成电路常常会受到干扰,导致不能正常工作或在错误状态下运行,造成的 后果往往是很严重的。因此对抗干扰性能的了解是称重仪表选型的关键。我们在对珠海市长陆工业自动控 制系统有限公司生产的 UNI800 称重仪表与 TR700 称重变送器和其它同类厂家产品进行反复比较过程中, 获得了一个好单片机系统(称重仪表)应具备的抗干扰性能方面的分析经验。在此与同行分享,希望以此 促进行业技术水平的提高。仪表电磁兼容性 (EMC) 是一项重要指标,它包含系统的发射和敏感度两方面的问题。如果一个单片机系统 符条件合下面三个条件
38、,则该系统是电磁兼容的:1对其他系统不产生干扰;2对其他系统的发射不敏感;3对系统本身不产生干扰;假若干扰不能完全消除, 但也要使干扰减少到最小。 干扰的产生不是直接的 (通过导体、 公共阻抗耦合等) , 就是间接的(通过串扰或辐射耦合)。电磁干扰的产生是通过导体和通过辐射,很多磁电发射源、如光照、 继电器、 DC 电机和日光灯都可以引起干扰; AC 电源线、互连电缆、金属电缆和子系统的内部电路也都可 能产生辐射或接收到不希望的信号。在高速单片机系统中,时钟电路通常是宽带噪声的最大产生源,这些 电路可产生高达 300MHz 的谐波失真,在系统中应该把他们去掉。另外,在单片机系统中最容易受影响的
39、 是复位线,中断线和控制线。1 干扰的耦合方式(1 )传导性 EMI 一种最明显而往往被忽略的能引起电路中噪声的路径是经过导体。一条穿过噪声环境的导线可检拾噪声并 把噪声送到其他电路引起干扰。 设计人员必须避免导线检拾噪声和在噪声引起干扰前用去耦办法去除噪声。 最普通的例子是噪声通过电源进入电路。若电源本身或连接到电源的其他电路是干扰源,则在电源线进入 电路之前必须对其去耦。(2)公共阻抗耦合 当来自两个不同电路的电流流经一个公共阻抗时就会产生共阻抗耦合。阻抗上的压降由两个电路决定,来 自两个电路的地电流流过共地阻抗。电路 a 的地电位被电流 b 调制,噪声信号或 DC 补偿经共地阻抗从电 路
40、b耦合到电路a。(3 )辐射耦合经辐射的耦合通称串扰。 串扰发生在电流流经导体时产生电磁场, 而电磁场在邻近的导体中感应瞬态电流。(4 )辐射发射辐射发射有两种基本类型;差分模式 (DM)和共模(CM)。共模辐射或单极天线辐射是由无意的压降引起的, 它使电路中所有地连接抬高到系统电地位之上。就电场大小而言, CM 辐射是比 DM 辐射更为严重的问题。 为使 CM 辐射最小,必须用切合实际的设计使共模电流降到零。2 影响 EMC 的因数(1)电压。电源电压越高,意味着电压振幅越大,发射就更多,而低电源电压影响敏感度。(2)频率。高频产生更多的发射,周期性信号产生更多的发射。在高频单片机系统中,当
41、器件开关时产生 电流尖峰信号;在模拟系统中,当负载电流变化时产生电流尖峰信号。(3 )接地。在所有 EMC 问题中,主要问题是不适当的接地引起的。有三种信号接地方法:单点、多点和 混合。在频率低于 1MHz 时,可采用单点接地方法,但不适宜高频;在高频应用中,最好采用多点接地。 混合接地是低频用单点接地,而高频用多点接地的方法。地线布局是关键,高频数字电路和低电平模拟电 路的接地电路绝不能混合。4)PCB 设计。适当的印刷电路板( PCB )布线对防止 EMI 是至关重要的。(5)电源去耦。 当器件开关时, 在电源线上会产生瞬态电流, 必须衰减和滤掉这些瞬态电流。 来自高 di/dt 源的瞬态
42、电流导致地和线迹 “发射 ”电压,高 di/dt 产生大范围的高频电流,激励部件和线缆辐射。流经导线 的电流变化和电感会导致压降,减小电感或电流随时间的变化可使该压降最小。3称重仪表对抗干扰与复杂工况处理的硬件要求在硬件上我们要求仪表厂家必须具有以下措施:(1 ) PCB 及电路抗干扰措施印刷电路板的抗干扰设计与具体电路有着密切的关系, 这里仅就 PCB 抗干扰设计的几项常用措施作一些说 明。 电源线设计 根据印刷线路板电流的大小,尽量加粗电源线宽度,减少环路电阻;同时,使电源线、地线的走向和数据 传递的方向一致,这样有助于增强抗噪声能力。 地线设计 在单片机系统设计中,接地是控制干扰的重要方
43、法。如能将接地和屏蔽正确结合来使用,可解决大部分干 扰问题。单片机系统中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点:a.正确选择单点接地与多点接地。在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而采用一点接地的方式。当信号工作频率大于1 10MHz10MHz ,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在 时,如果采用一点接地,其地线长度不应超过波长的 1/20 ,否则应采用多点接地法。b. 数字地与模拟地分开。电路板上既有高速逻辑电路,又有线性电
44、路,应使它们尽量分开,而两者的地线 不要相混,分别与电源端地线相连。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串 联后再并联接地;高频元件周围尽量用栅格状大面积地箔,要尽量加大线性电路的接地面积。3 mm 。C .接地线应尽量加粗。若接地线用很细的线条,则接地电位会随电流的变化而变化,致使电子产品的定 时信号电平不稳, 抗噪声性能降低。 因此应将接地线尽量加粗,使它能通过三倍于印刷电路板的允许电流。 如有可能,接地线的宽度应大于d .接地线构成闭环路。设计只由数字电路组成的印刷电路板的地线系统时,将接地线做成闭路可以明显地提高抗噪声能力。其原因在于:印刷电路板上有很多集成电路元
45、件,尤其遇有耗电多的元件时,因受接地 线粗细的限制,会在地线上产生较大的电位差,引起抗噪声能力下降;若将接地线构成环路,则会缩小电 位差值,提高电子设备的抗噪声能力。 退耦电容配置PCB 设计的常规做法之一, 是在印刷板的各个关键部位配置适当的退耦电容。 退耦电容的一般配置原则是: a.电源输入端跨接10100 gF的电解电容器。如有可能,接100 gF以上的更好。b .原则上每个集成电路芯片都应布置一个0.01 pF的瓷片电容。如遇印刷板空隙不够,可每48个芯片布置一个110pF的钽电容。C.对于抗噪声能力弱、关断时电源变化大的器件,如RAM、ROM存储器件,应在芯片的电源线和地线之间直接接
46、入退耦电容。d .电容引线不能太长,尤其是高频旁路电容不能有引线。此外,还应注意以下两点:RC 电a. 在印刷板中有接触器、继电器、按钮等元件时,操作它们时均会产生较大火花放电,必须采用 路来吸收放电电流。一般 R取12kQ,C取2.247gF。b. CMOS 的输入阻抗很高,且易受感应,因此在使用时,对不用端要接地或接正电源。(2) 输入/输出的电磁兼容性设计在单片机系统中输入 /输出也是干扰源的传导线,和接收射频干扰信号的拾检源,称重仪表设计时一般要采 取有效的措施: .采用必要的共模/差模抑制电路,同时也要采取一定的滤波和防电磁屏蔽措施以减小干扰的进入。.在条件许可的情况下尽可能采取各种
47、隔离措施(如光电隔离或者磁电隔离),从而阻断干扰的传播。(3) 单片机复位电路的设计 在单片机系统中,看门狗系统对整个单片机的运行起着特别重要的作用,因为所有的干扰源不可能全部被 隔离或去除, 一旦进入 CPU 干扰程序的正常运行, 那么复位系统结合软件处理措施就成了一道有效的纠错 防御的屏障了。常用的复位系统有以下两种: . 外部复位系统。 外部“看门狗 ”电路可以自己设计也可以用专门的 “看门狗 ”芯片来搭建。 然而, 他们各有 优缺点,大部分专用 “看门狗 ”芯片对低频 “喂狗”信号不能响应,而高频 “喂狗”信号都能响应,使其在低频 “喂 狗”信号下产生复位动作而在高频的 “喂狗 ”信号
48、下不产生复位动作,这样,如果程序系统陷入一个死循环, 而该循环中恰巧有着 “喂狗”信号的话,那么该复位电路就无法实现它的应有的功能了。然而,我们自己可 以设计一个具有带通的 “喂狗 ”电路和其他复位电路构成的系统就是一个很有效外部监控系统了。现在越来越多的单片机都带有自己的片上复位系统,这样用户就可以很方便的使用其内部的复位定时 器了,但是,有一些型号的单片机它的复位指令太过于简单,这样也会存在象上述死循环那样的“喂狗 ”指令,使其失去监控作用。有一些单片机的片上复位指令就做的比较好,一般他们把“喂狗 ”信号做成固定格式的多条指令依顺序来执行,如果有一定错误则该 “喂狗 ”操作无效,这样就大大
49、提高了复位电路的可靠性。( 4 )振荡器大部分的单片机都有一个耦合于外部晶体或陶瓷谐振器的振荡器电路。在 PCB 上, 要求外接是电容、 晶体或陶瓷谐振器的引线越短越好。 RC 振荡器对干扰信号有潜在的敏感性,它能产生很短的时钟周期,因而 最好选晶体或陶瓷谐振器。另外,石英晶体的外壳要接地。(5)防雷击措施 室外使用的单片机系统或从室外架空引入室内的电源线、信号线,要考虑系统的防雷击问题。常用的防雷 击器件有:气体放电管、 TVS(Transient Voltage Suppression )等。气体放电管是当电源的电压大于某一 数值时,通常为数十 V 或数百 V ,气体击穿放电,将电源线上强
50、冲击脉冲导入大地。 TVS 可以看成两个并 联且方向相反的齐纳二极管, 当两端电压高于某一值时导通。 其特点是可以瞬态通过数百乃上千 A 的电流。(6)电源系统抗干扰 由于工业电源特别是搅拌设备的电源工况复杂,因此如何在不稳定电源场合确保称重仪表工作稳定尤为重 要。常用的开关电源与线性电源相比各有优缺点:开关电源作为恒功率器件,外部供电电压高则输出电流小, 电压低则输出电流大,从而维持输入到仪表内部的功率恒定,从而减少仪表内部温度差,更不会因过热造 成元件损坏。而线性电源在电压升高时,电流将增大,特别是电压运行高于 240VAC 时,内部温升加快, 会造成变压器或三端稳压器等损坏,在低于 22
51、0VAC 时,会造成运行不可靠或停止运行。所以一般工业控 制采用开关电源方式,而试验或商用设备采用线性电源较为合理。由于电源波动会造成仪表输出的激励电压波动,因此称量值会随之变化,故应采用较为保险的多级稳压方 案。 UNI800 与 TR700 均采用二级稳压,当外部电压波动,对仪表读数影响甚小;而有些仪表采用一级稳 压,称重数值随外部电压波动而异常变化根本无法满足要求。7 )模拟信号输出 有些称重仪表厂家为降低成本, 往往采用 12 位脉宽调制方法输出模拟信号, 这有几个坏处: 由于脉冲来 自单片机系统,占用晶振资源,往往造成输出模拟值滞后仪表读数很多;低位数的脉宽调制往往在重复 性、线性上
52、较差, 再加上信号给上位机进行 A/D 转换又有精度损失, 故此方案用于配料精度高场合不可行。UNI800 称重仪表及 TR700 称重变送器由于采用 16 位 DA 转换输出模拟信号而成为较佳的选择。(8)来自称体的干扰由于秤体的结构变化或物料的粘附等造成称重数值漂移,因此必须在启动配料时须有自动清零功能,UNI800 称重仪表与 TR700 称重变送器的此功能确保每次配料的准确性。(9)信号输入范围 很多添加量较小的材料因秤体自重较重,零位信号较高,放大信号也由于使用 3mv/v 传感器而接近 30mv , 对于此要求很多仪表由于放大器设计所限最大只能接受 25mv 信号而导致不能调校,只能通过加高精度电 阻下拉信号电压,但这往往对于野外作业
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论