下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 No. 6 CHE Wei-Wei and YANG Guang-Hong: Quantized Dynamic Output Feedback H Control for · · · 657 To facilitate the presentation of Theorem 2, we denote Aeopt = A Bcopt C2 B1 Ccopt , Ceopt = C1 Acopt 0 Acopt 0 Bcopt B1 0 D12 Ccopt By solving LMI (9, a controller is obtained with the g
2、ain matrices = Aini c 0.0213 0.9711 1.6320 3.1451 = , B ini c 5.0328 1.3363 0.2317 ¯1opt = B C ini = 0.0040 c Theorem 2. Consider plant (1 controlled by the quantized dynamic output feedback controller (6, if only M1 and M2 are chosen satisfying M1 > M2 > where opt = opt opt min (Qopt opt
3、 2 C2 min (Qopt (46 (47 2 2 = 1 + ( 3 + Ccopt 1 , opt T ¯ + opt min (Qopt with opt = Ceopt D1 + opt + T T ¯ T ¯ ¯1 ¯1 ¯ Aeopt Popt B1opt and opt = D D1 + 2B opt Popt B1opt . Then, the control strategy (6 with updating µ1 and µ3 by 2 opt µ1 = 2|x c | M1 +
4、opt opt min (Qopt , µ3 = µ1 (48 correspondingly, the value of is obtained as au = 3.6421. Let = 2 and the quantization errors 1 = 2 = 3 = 0.1. On the one hand, by Lemma 1 and Q( > 0 with the ini ini above gain matrices Aini c , B c , C c , and = 4.3346 and = 0.01, we obtain matrices Qle
5、m and Plem . Apparently, min (Qlem = 0.01. By Theorem 1, it is easy to compute /min (Qlem = 279.2494 and 2 C2 /min (Qlem = 663.0357. Let M1 = 280 > 279.2494 and M2 = 664 > 663.0357. According to (7, the range of the quantizer q3 (· can be computed as M3 = 7.5208. In contrast, by Algorithm
6、 1, with Ac0 = Aini c , B c0 = ini B ini c , C c0 = C c , = 0.0001, c0 = 1, c1 = 100, c2 = 10 000, and = 4.3346 and = 0.01, we obtain optimized matrices Qopt , Popt , and the controller gain matrices 0.0179 0.9454 1.4231 2.6540 , B copt = , 1.1833 4.6790 0.2317 . and updating µ2 by µ2 = 2|
7、y | M2 + opt 2 C2 min (Qopt Acopt = (49 C copt = 0.0040 renders the closed-loop system (8 asymptotically stable and with the H performance bound . Proof. It is similar to the proof of Theorem 1 and is omitted here. Remark 4. Because min (Q has a signicant eect on the value of /min (Q, the condition
8、Q( > 0 is introduced to restrict the value of min (Q, such that min (Q . Remark 5. On the one hand, in Algorithm 1, by means of optimizing the index , we obtain the optimized solutions Acopt , Bcopt , Ccopt , Popt , and Qopt , such that the values of opt opt /min (Qopt and opt 2 C2 /min (Qopt are
9、 minimum. Thus, the ranges M1 , M2 , and M3 can be optimized indirectly. On the other hand, by Theorem 2, when M1 > opt opt /min (Qopt and M2 > opt 2 C2 /min (Qopt , controller (6 with gain matrices Acopt , Bcopt , and Ccopt , by updating µ1 , µ3 according to (48 and updating µ2
10、 according to (49 renders the closed-loop system (8 asymptotically stable and with the H performance bound . So we have given an optimization method to solve Problem 1. By Theorem 2, we can obtain opt opt /min (Qopt = 244.3255 and opt 2 C2 /min (Qopt = 577.7594. Let M1 = 245 > 244.3255 and M2 = 5
11、78 > 577.7594. And according to (7, the range of the quantizer q3 (· can be computed as M3 = 6.5810. The quantizer ranges obtained by Theorem 1 and by Theorem 2 will be compared in Table 1. Table 1 Comparison of the quantizer ranges Theorem 1 Theorem 2 245 578 6.5810 M1 M2 M3 280 664 7.5208
12、3 Example In this section, an example is presented to illustrate the eectiveness of the proposed method. Example 1. Consider the system of form (1 with 0.5 1 B2 = 0 0.5 1 , B1 = , C1 = 1 .5 1 0 0.5 , C2 = 1 0 1 , D 12 = 0 1 1 0 A= From Table 1, it is clear that the ranges of the quantizers q1 (·
13、;, q2 (·, and q3 (· obtained by Theorem 2 are much more improved than the corresponding one obtained by Theorem 1, by reducing 12.58%, 12.19%, and 12.50%, respectively. The initial system state and controller state are chosen as x 0 = 5, 4 and x c0 = 10, 10, respectively. Let the disturban
14、ce input = 10 randn + 5 for k 15, 25, and let the disturbance input = 0 for all the other k, where randn is a normal distribution with mean zero, variance one, and standard deviation one. Then, Fig. 1 shows the regulated output responses of system (8. In Fig. 1, the solid lines show the results obta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《保单体检服务》课件
- 2025届四川省眉山一中办学共同体重点中学高三第三次模拟考试英语试卷含解析
- 广东省广州市2025届高三下学期一模考试数学试题含解析
- 2025届河北省石家庄二中润德学校高三适应性调研考试英语试题含解析
- 北京市首都师范大学附属回龙观育新学校2025届高考冲刺数学模拟试题含解析
- 云南省楚雄州2025届高三第四次模拟考试英语试卷含解析
- 上海市华东师大三附中2025届高考数学三模试卷含解析
- 山西省长治市潞州区长治二中2025届高三一诊考试语文试卷含解析
- 河南省驻马店2025届高三第五次模拟考试英语试卷含解析
- 云南省江川第二中学2025届高考适应性考试英语试卷含解析
- 2025年中考数学备考计划
- 高层建筑用电安全管理制度
- 2024学校安全工作总结
- 2024-2030年中国化工设计市场发展前景调研及投资战略分析报告
- 2024年低压电工复审模拟考试题库及答案(共230题)
- 2024-2025学年语文二年级上册统编版期末测试卷(含答案)
- 教育机构课程顾问咨询流程
- 2024年学校意识形态工作总结模版(5篇)
- 6《记念刘和珍君》《为了忘却的纪念》说课稿 2024-2025学年统编版高中语文选择性必修中册
- 智能化住宅小区施工合同
- 葡萄酒文化与鉴赏学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论