




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、复复 习习 引引 入入1. 经典的建筑给人以美的享受,其经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿中奥秘为何?世间万物,为何千姿百态?百态? 复复 习习 引引 入入2. 小学与初中在平面上研究过哪些小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些几何图形?在空间范围上研究过哪些几何图形?几何图形?1. 棱柱棱柱定义定义讲讲 授授 新新 课课 有两个面互相平行,其余各面都是有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体都互相平行,由这些面所围成的几何体叫叫棱柱棱柱.讲讲 授授 新新
2、课课1. 棱柱棱柱定义定义EDACBEDACB棱柱的底面棱柱的底面(底底):棱柱的侧面棱柱的侧面:棱柱的侧棱棱柱的侧棱:棱柱的顶点棱柱的顶点:2. 棱柱棱柱有关概念有关概念EDACBEDACB棱柱的底面棱柱的底面(底底):棱柱的侧面棱柱的侧面:棱柱的侧棱棱柱的侧棱:棱柱的顶点棱柱的顶点:两个互相平行的面;两个互相平行的面;相邻侧面的公共边;相邻侧面的公共边;其余各面;其余各面;2. 棱柱棱柱有关概念有关概念的公共顶点的公共顶点.侧面与底面侧面与底面 以底面多边形的边数作为分类的标以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等准分为三棱柱、四棱柱、五棱柱等. 3. 棱柱棱柱分类分类
3、4. 棱锥棱锥定义定义 有一个面是多边形,其余各面都是有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所有一个公共顶点的三角形,由这些面所围成的几何体叫围成的几何体叫棱锥棱锥.SABCDE5. 棱锥棱锥有关概念有关概念棱锥的侧面棱锥的侧面:棱锥的底面或底棱锥的底面或底:棱椎的侧棱棱椎的侧棱:棱锥的顶点棱锥的顶点:SBCDA5. 棱锥棱锥有关概念有关概念棱锥的侧面棱锥的侧面:棱锥的底面或底棱锥的底面或底:棱椎的侧棱棱椎的侧棱:有公共顶点的各三角形;有公共顶点的各三角形;余下的那个多边形;余下的那个多边形;两个相邻侧面的公共边;两个相邻侧面的公共边;棱锥的顶点棱锥的顶点:各侧面的公共
4、顶点各侧面的公共顶点.SBCDA棱锥的底面棱锥的底面棱锥的侧面棱锥的侧面棱锥的顶点棱锥的顶点棱锥的侧棱棱锥的侧棱BCDEAOS5. 棱锥棱锥有关概念有关概念6. 棱锥棱锥分类分类 底面是三角形、四边形、五边形底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、的棱锥分别叫做三棱锥、四棱锥、五棱锥五棱锥其中三棱锥又叫做四面体其中三棱锥又叫做四面体.讨论:讨论:棱柱、棱锥分别具有一些什么几何棱柱、棱锥分别具有一些什么几何 性质?有什么共同的性质?性质?有什么共同的性质?棱棱柱柱棱棱锥锥讨论:讨论:棱柱、棱锥分别具有一些什么几何棱柱、棱锥分别具有一些什么几何 性质?有什么共同的性质?性质?有什
5、么共同的性质?棱棱柱柱 两底面是对应边平行的全等多边形;两底面是对应边平行的全等多边形; 侧面、对角面都是平行四边形;侧面、对角面都是平行四边形; 侧棱平行且相等;侧棱平行且相等; 平行于底面的截面是与底面全等的平行于底面的截面是与底面全等的 多边形多边形.棱棱锥锥 讨论:讨论:棱柱、棱锥分别具有一些什么几何棱柱、棱锥分别具有一些什么几何 性质?有什么共同的性质?性质?有什么共同的性质?棱棱柱柱 两底面是对应边平行的全等多边形;两底面是对应边平行的全等多边形; 侧面、对角面都是平行四边形;侧面、对角面都是平行四边形; 侧棱平行且相等;侧棱平行且相等; 平行于底面的截面是与底面全等的平行于底面的
6、截面是与底面全等的 多边形多边形.棱棱锥锥 侧面、对角面都是三角形;侧面、对角面都是三角形; 平行于底面的截面与底面相似,其平行于底面的截面与底面相似,其 相似比等于顶点到截面距离与高的相似比等于顶点到截面距离与高的 比的平方比的平方.讨论:讨论:棱柱、棱锥分别具有一些什么几何棱柱、棱锥分别具有一些什么几何 性质?有什么共同的性质?性质?有什么共同的性质?7. 圆柱、圆锥的结构特征:圆柱、圆锥的结构特征: 讨论讨论:圆柱、圆锥如何形成?:圆柱、圆锥如何形成?7. 圆柱、圆锥的结构特征:圆柱、圆锥的结构特征: 定义定义: 讨论讨论:圆柱、圆锥如何形成?:圆柱、圆锥如何形成?7. 圆柱、圆锥的结构
7、特征:圆柱、圆锥的结构特征: 定义定义:以矩形的一边所在的直线为轴:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成旋转,其余三边旋转所成的曲面所围成的几何体叫的几何体叫圆柱圆柱;以直角三角形的一条;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫曲面所围成的几何体叫圆锥圆锥. 讨论讨论:圆柱、圆锥如何形成?:圆柱、圆锥如何形成? 棱柱与圆柱、棱柱与棱锥的棱柱与圆柱、棱柱与棱锥的共同特征是什么?共同特征是什么? 讨讨 论:论:观察下面的几何体,哪些是棱柱?观察下面的几何体,哪些是棱柱?1. 观察下面的几何体,哪些是棱柱?观察
8、下面的几何体,哪些是棱柱?练习练习1. 观察下面的几何体,哪些是棱柱?观察下面的几何体,哪些是棱柱?练习练习2cm2cm2有两个面互相平行,其余各面都是平有两个面互相平行,其余各面都是平 行四边形的几何体是不是棱柱(举反行四边形的几何体是不是棱柱(举反 例说明)例说明)3棱柱的任何两个平面都可以作为棱柱棱柱的任何两个平面都可以作为棱柱 的底面吗?的底面吗?练习练习4教材教材P.7练习第练习第1、2题题. 2cm2cm5. 已知圆锥的轴截面等腰三角形的腰长为已知圆锥的轴截面等腰三角形的腰长为 5cm, 面积为面积为12cm2,求圆锥的底面半径求圆锥的底面半径.6. 已知圆柱的底面半径为已知圆柱的底面半径为3cm,轴截面面,轴截面面 积为积为24cm2,求圆柱的母线长,求圆柱的母线长.7. 正四棱锥的底面积为正四棱锥的底面积为4 cm2,侧面等,侧面等 腰三角形面积为腰三角形面积为6cm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025五指山市八所镇社区工作者考试真题
- 青光眼急性发作期的护理
- 高中生文明礼仪教育:内外兼修优雅成长
- 铁路班组设备培训课件
- 浙江省四校2024-2025学年高二下学期3月联考生物试卷
- 初中生物鸟类和哺乳动物教案-2024-2025学年人教版生物七年级上册
- 环艺毕业设计灵感元素提取指南
- 2025项目管理人员安全培训考试试题【有一套】
- 题型01 读图理解-2025年中考《生物》二轮复习测试卷
- 2025年岗前安全培训考试试题及答案【典优】
- 2025-2030年中国小麦加工产业运行动态及发展可行性分析报告
- 乾坤未定皆有可能-2025届高三百日誓师班会课件
- 台达DELTA变频器VFD-EL系列使用说明书和手册(完整中文版)VFD007EL23A
- 2025年山西汾西矿业集团公司招聘笔试参考题库含答案解析
- 2024年度英语课件容貌焦虑
- 神经外科质量与安全管理工作计划
- 城市违建拆除施工方案
- 复色激光光谱分析研究
- 农药代销协议书模板
- 《电力中长期交易合同示范文本(2022年修订版)》
- 小学班会 世界知识产权日知识产权宣传周主题班会 课件
评论
0/150
提交评论