注入头设计计算说明书(共23页)_第1页
注入头设计计算说明书(共23页)_第2页
注入头设计计算说明书(共23页)_第3页
注入头设计计算说明书(共23页)_第4页
注入头设计计算说明书(共23页)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上第二章 注入头部件2.1注入头概述连续油管注入器是连续油管作业装备的关键设备,注入器主要功能是夹持油管并克服井下压力对油管柱的上顶力和摩擦力,把连续油管下入井内或夹持不动或从井内起出,控制油管注入和起出的速度。2.2结构形式的拟定 通过对油田连续油管注入头的现场调研,查阅国内外相关文献,多种方案对比,确定注入头设计方案,结构如图2-1、图2-2所示。由两台同步的可正反转动的液压马达提供动力,链条驱动,带动夹持块夹持连续油管上下移动。液压马达为低速径向柱塞马达,带有内部实效保护。两个液压马达通过液压系统达到基本同步,由同步齿轮传动实现链轮的机械同步;由两组胀紧液压缸推动

2、浮动夹块达到链条胀紧的目的;由夹紧液压缸推动夹紧浮动夹块,夹紧装在链条上的油管夹块夹紧油管,通过链条带动夹块实现油管起下动作。链条上由带有特殊表面形状和处理工艺的夹持块通过链条销轴固定在一起,以适应连续油管的外径,并达到良好的夹持注入的性能,同时达到最小连续油管的夹持变形和最低的附加应力;由压力传感器通过杠杆机构测量连续油管注入和上提力的大小。注入头的主要设计参数如下:1、 驱动方式:液压马达;2、 注入最大下入速度:60m/min(1m/s);3、 注入方式:夹持夹块摩擦驱动,链条带动夹块传动;4、 链条张紧液缸数:2*2个;5、 链条夹紧液缸数:3*2个;6、 最大下井深度:4000m;7

3、、 测力系统:压力传感器;8、 液压马达型号:CA50;9、 适应连续油管:31.75mm,38.1mm;2.3结构形式设计说明1、 连续油管起下方式 作业要求连续油管不断的向油井内注入或起出。利用夹块夹持油管产生足够的摩擦力,再利用链条输送夹块完成油管的注入或起出。为了使夹块对油管的夹持应力不超限,必须采用多个夹块夹持。2、 夹块夹持方式 因多夹块必须同时夹持,采用三级浮动的多滚子夹头。为了保证每个夹块都有一个浮动夹头的滚子夹持,油管承受的夹持力足够能产生下入和提升4000m油管的使用要求。为减小油管所受压强,采用三组具有24个滚子的浮动夹头。3、 链条与夹块的连接方式 用两条32A链条,每

4、节连接1个夹块,成为双排链条,夹块与链条同时连续运动,这样受力好,提升力大。4、 链条传动方式 链条采用径向低速大扭矩柱塞液压马达传动,省去价格昂贵的减速器,又缩小了轴向尺寸,链条带有胀紧装置。图2-1 注入头图2-2 注入头总体5、 夹块机构夹块夹持部分的圆弧与管径相符合,为了提高摩擦系数开有横向槽。夹块结构随链条在链轮上传动,不能发生干涉。材料具有足够的硬度,好的耐磨性。采用低合金钢渗碳淬火处理。6、 链条传动同步要求 为了使两个链条运转同步,保证夹块与管子很好的结合,采用相互啮合的齿轮装在链轮轴上。7、 机架结构为了装配方便,机架采用两块刚度足够的支撑板,通过尺寸精度很高的支撑块支撑。8

5、、 提升力的测量在注入头下部采用杠杆机构液压缸,连接传感器就可以准确测出提升力。9、 油管的引导利用装在注入头上方的带滚轮的油管导向架引导油管顺利插入注入头,注入头上下各设一个引导套。10、注入头的支撑注入头的动力部分装在支撑架中,作业时有四根可以伸缩的支腿支撑。2.4油管导向架注入头顶部装有油管导向架,用于牵引连续油管从卷筒到链条牵引总成的导入与导出,是由一系列与架垂直的滚子组成的弧形架,为保证连续油管圆滑过渡,滚子间距定320mm左右,管子在一定的弯曲半径下弯曲,其变形是处于弹性变形范围的。在弹性极限内,管子能承受最小弯曲半径R可按下式计算:式中 E管材的弹性模量,Pa; D油管外径,mm

6、;s管材的屈服强度,Pa;现在我国引进的连、续油管管材一般为ASTM,A-606钢,其中s=482.58MPa,E208.34GPa按上式计算in、in油管的弯曲半径见表2-1。表2-1 连续油管弯曲半径连续油管规格(in)外径(mm)最小弯曲半径(mm)31.75685438.108224如果管子弯曲时弯曲半径小于表2-1所列的值,那它将产生塑性变形。我国各油田引进的能适应in、in油管的连续油管作业机的卷筒半径和导向架半径都远远小于其最小弯曲半径,可见连续油管在起、下作业时均将发生交变的弯曲塑性变形。但是,管子只是在瞬时处于弯曲塑性变形。为在运输中减少空间,以及根据现场测绘进口的导向架内侧

7、半径1100mm,设计的油管导向架内侧半径1100mm。外侧弯曲半径1237mm,前端采用折叠式,结构如图2-3。图2-3 油管导向架2.5链条载荷2.5.1链条所受载荷分析注入头链条上所受的载荷主要是油管上的轴向力(上顶力、油管重力和油管运动的摩擦力)及链条与夹紧压块间的摩擦力。(1)油管的轴向力油管的轴向力主要有油井压力对油管的上顶力、下人井内油管的重力、油管在井内产生的摩擦力和油管与防喷器胶心间的摩擦力及油管运动产生的动载荷。在起出或注入油管的过程中,轴向力随井内油管的深度变化而变。为防止井下压力窜到地面,通常在油管下部加装一个单向阀,所以认为油井内的上顶力作用在油管底部。考虑到连续油管

8、在下入和起升时,基本上是匀速运动,动载荷较小忽略不计。设油管下入深度为L,油管在井内的上顶力为井深L处的液压力乘以油管外径的横截面积,这时油管的轴向力可表示为: (2-1)式中: F油管轴向力,N;D油管外径,m;P0井口压力,MPa;y井液密度,kg/m3;g一重力加速度,9.8m/s2;L油管下入深度,m;d一油管内径,m;g一油管材料的密度,kg/m3;F m一油管轴向运动受到的摩擦力,N。式中第一顶为油管在井内受到的上顶力,第二项是油管的重力,第三项是油管受到的摩擦力,包括油管与井壁和井液间的摩擦及油管与防喷器胶心间的摩擦,下入油管时为正,起出时为负。F'm是一个与井眼状况和井

9、液性质有关的参数,要得到精确的计算值是比较困难的,也是没有必要的,一般近似地取F'm等于油管受到的浮力。下入油管时的轴向力为: (2-2)起出油管时的轴向力为: (2-3)由于g/y>7 ,所以下入油管时注入器需克服的最大轴向力为: (2-4)起升油管时注入器需克服的最大轴向力为: (2-5)式中:Fxmax下入油管时的最大轴向力,N;Fsmax起升油管时的最大轴向力,N; Lmax油管设计下入的最大井深,m。显然,注入器在设计时应考虑克服的最大轴向力为:Fmax=maxFxmax,Fsmax (2-6)(2)链条所受的摩擦力 链条在运动时与夹紧压块间存在摩擦力,这个摩擦力的方向

10、与链条运动方向相反,大小应足以克服最大轴向力。为了可靠地夹紧油管,夹紧压块所需的夹紧力应力: Fj=Fmax/fd (2-7)式中: Fj-夹紧压块所需的夹紧力,N; fd-链条所带油管卡瓦与油管间的摩擦系数, fd=0.5-0.6(s)。由于有两副链条,每副链条的内周面分别与两侧的夹紧压块发生摩擦,链条所受的摩擦力为:Fm=20Fj (2-8)式中: 0钢-钢滑动摩擦系数。(3)链条所受的牵引负载 链条所受的牵引负载为油管轴向力与链条摩擦力之和: FL=F+2Fmax(0/fd) (2-9)链条所受的最大牵引负载为:FLmax= Fmax 1+2(0/fd) (2-10)链条的牵引负载是油马

11、达的负载,链条牵引负载的变化直接影响到油马达的工况。取Lmax4000m,y950kg/m3,g7800kg/m3,Po=25MPa,D=38.1X103m,d=28.1 *103m,fd0.5,00.1,分别计算了下入和起升油管时FL随井深的变化情况如表2-2,表2-3所示。表2-2下人油管时FL随井深的变化井深(m)05001000200030004000链条牵引负载(KN)111.96102.7193.4574.9356.4237.9表2-3起出油管时FL随井深的变化井深(m)05001000200030004000链条牵引负载(KN)-54.95-74.83-94.07-134.5-1

12、74.2-213.1表中各力向上为正,向下为负。从表2-2中可见,下入油管时链条牵引负载FL随下入深度的增加而减小,这是因为油管重力随下入深度而增加的数值大于上顶力随下入深度而增加的数值。由于链条摩擦力是最大下入井深时的油管轴向力确定的,链条摩擦力的存在使链条牵引负载仍然向上,即需要油马达提供扭矩将油管压入井内。对于外径38.1mm,壁厚5mm的油管,下入井口压力25MPa的井中时,在整个下入过程中,链条牵引负载一直向上,即油马达一直带负载运转,不会出现负扭矩。从表2-3可见,起出油管时FL绝对值随井深的增加而增加,且在整个起升过程中一直保持向下,即油马达一直带负载运转,不会出现负扭矩。所以选

13、液压马达的最大负载要大于213.1KN,约22吨,为保证安全,设计时按24吨设计。2.5.2链轮传动设计计算1链轮齿数在条件允许的情况下,尽量减小结构尺寸,齿数太少,两轴间距减小,液压马达将无法安装,取上链轮齿数z114,下链轮齿数z2122链轮转速3链条节距p链条传递功率 PF*式中 F链条载荷(N);链条速度(m/s);=24000kg*9.8N/kg*1m/s=235.2kw一侧链条传递功率 P1117.6kw由于一个轴带动2条链条单个链条的修正功率为PcP1f1f2/1.75 (2-11)式中 f1工况系数;f2主动链轮齿数系数;查表得 f11.1;f21.9Pc117.6×

14、1.1×1.9/1.75140.5k w由修正功率Pc140.5kw和上链轮的转速n183.7r/min查表选节距p为32A即p50.8mm。上链轮的主要尺寸:分度圆直径 齿顶圆直径 齿根圆直径 式中 dr滚子外径;199.71mm下链轮的主要尺寸:分度圆直径 齿顶圆直径 齿根圆直径 167.7mm计算链轮几何尺寸并绘制链轮工作图,上下链轮图如图2-4、2-5。4初定中心距a0p因一套夹紧机构夹持连续油管所占用的位置是395mm,三套夹紧机构总长度1185mm,2个链轮齿顶圆半径和233.5mm,所以粗定链轮中心距a0p1635mm。a0p32p5链长节数X0 (2-12) 77.0

15、03式中由于有张紧装置,所以取X0806链条长度L则两根双排链链条长度为8.128m。图2-4 上链轮图2-5 下链轮2.5.3链的静强度计算在低速重载荷传动中,链条的静强度占有主要地位。根据链轮设计,选择32A链条 (2-13)式中: n静强度安全系数;Q链条极限拉伸载荷(N);KA工矿系数;F有效拉力Fc离心力引起的拉力Ff悬垂拉力n许用安全系数查表可得: Q444.8KN; KA1.1有效拉力: N离心力引起的拉力: 式中 q链条每米质量(kg/m);链速(m/s);由于,所以Fc可以忽略不计Ff10.1×1.635×9.8161.8N将数带入(2-13)式得:3.4

16、链轮转速较低,取n=3则nn选32A的链条符合设计要求。2.6夹紧机构校核2.6.1油缸选择夹紧油缸的载荷就是注入头链条所需的夹紧力,注入头有6个夹紧油缸,两两成组。所以,夹紧油缸载荷还应考虑同步机构的摩擦力和油缸活塞与缸筒、活塞杆与密封装置间的摩擦力。这样每个夹紧油缸需要的载荷为: (2-14)式中 Fj单个油缸载荷,N;c0考虑摩擦力的计算系数c01.21.25;n夹紧油缸的个数;fd链条所带油管卡瓦与油管间的摩擦系数,fd0.50.6;以上数据,取n6,c01.25,fd0.5选择油缸缸径150,最大压强为16MPa的液压油缸,计算选用10MPa。油缸的夹紧力为:F夹P油×(S

17、1S2)式中 P油液压油缸压强(MPa);S1油缸缸径(mm2);S2活塞轴直径(mm);F夹10××(75237.52).75N则液压油缸满足使用要求。2.7液压马达选择由于链条的牵引负载就是液压马达的负载,上链轮的尺寸已经设计完成,链轮受力点与链轮节圆相切,则受扭矩为: (Nmm) (2-15)13.4*106 Nmm 13.4*103 Nm选用瑞典赫格龙公司生产的CA50液压马达,该马达参数为:排量Vi3140cm3/rev,最高压力Pmax35MPa。液压马达传递最大扭矩: (2-16) 17.5*103N/m13.4*103 Nm液压马达满足使用要求。2.8上轴的

18、设计2.8.1初算轴径选择材料为40Cr,经调质处理,由机械设计手册得材料的力学性能数据为:b700MPas500MPa1320MPa1185MPa单轴传递功率为: P1117.6kw估算直径: (2-17)表2-4 A值见下表:轴的材料Q235,20Q235,354540Cr/MPa1220203030404052A15813413411711710610697118.7mm108.6mm单键、增大3d=122.5mm109.1mm取连接链轮处轴直径d110mm, 右侧由于不受扭矩作用,可适当把轴的直径减小,取右侧直径d右=90mm。结构如图2-6所示图2-6 上轴结构图2.8.2绘制弯矩(

19、M-x)扭矩(T-x)图以左侧轴承为坐标原点选取坐标系如图2-7所示。求各支点支反力RB、RD。由静力平衡方程 F×bRB×l0 F×aRD×l0 l0.347m,a=0.180m,b=0.167m,c=0.232m;带入方程得RB56597.1NRD61002.9N列出弯矩方程并绘制出弯矩图Mx。选取B点为坐标原点,弯矩方程为: () ()图2-7 轴受力、弯矩、扭矩图绘制弯矩如图2-7中3所示。绘制扭矩分布图,轴承损耗的转矩可忽略。根据平衡方程计算扭矩TaT0TaTN·mm绘制扭矩图如图2-7中4所示。2.8.3轴的强度校核由弯矩、扭矩图可

20、知,在c点处所受载荷最大,所以c处可能是危险截面,故对c点进行弯扭合成校核。 (2-18)式中 根据转矩所产生应力的性质而定的应力校正系数; M弯矩; T转矩; ca危险截面上的计算应力;W轴的抗弯截面模量;查表 W 0.6故轴c处符合强度要求。此外,在OO处虽然弯矩较小,但这个截面直径也较小,也可能是危险截面,因此也要对该截面进行弯矩校核。4880N·m弯曲应力 (2-19)式中 M弯矩(N·m)W抗弯截面系数式中 d截面直径(m);查表得40Cr的=1000MPa,故该轴满足强度要求。轴的完整图如图2-8所示。图2-8 轴的工作图2.9下轴的设计选择材料为40Cr,经调

21、质处理,由机械设计手册查得材料的力学性能数据为:b700MPas500MPa1320MPa1185MPa由于轴两侧用轴承支撑,中间通过链轮带动旋转,该轴所受扭矩非常小,可以忽略不计。只需进行弯矩校核,轴结构如图2-9。2.9.1绘制弯矩(M-x)图下轴在连续油管工作时,受力最大时是在连续油管刚下井口处,此时链条牵引负载由表2-1得Pmax111.96kN则单个轴轴受力为RF55.98KN由静力平衡方程求出支座E,G的支反力。由静力平衡方程 得 REPmax/2=27.99KNRGPmax/2=27.99KN列出弯距方程并绘制出弯矩图Mx。图2-9 下轴结构图选取E点为坐标原点,弯矩方程为: (

22、) ()l339mm绘制弯矩图如图2-10。2.9.2轴的强度校核从图可知最大弯矩在F截面处所以F处可能是危险截面。此外,在截面处虽然弯矩较小,但这个截面直径也较小,也可能是危险截面,因此要算截面弯矩:M现对上述两截面进行强度校核截面F处图2-10 轴受力、弯矩图查表得40Cr的=1000MPa,截面处该轴满足强度要求。轴的完整结构图如图2-11。图2-11 轴的工作图2.10上下轴平键的选择与校核2.10.1上轴平键的选择与校核(1)上轴安装平键处轴径为d110mm,查手册选择A型平键。确定键的宽度为b28mm、高度h16mm轴上及轮毂上槽深t10mm,t16.4mm。(2)按轴的结构设计确

23、定键长L160mm,l132mm。(3)强度校核,键的主要失效形式为压溃、剪切。用于静连接的键主要主要计算压溃见图2-12。强度条件为 (MPa) (2-20)剪切强度强度条件为 (MPa) (2-21)式中 d轴的直径(mm); h键的接触高度(mm); 许用挤压应力(MPa);许用剪切应力(MPa);查手册150MPa 90MPa对键的表面进行氮化处理后,硬度提高23倍。这时300MPa450MPa=231MPa 66MPa键符合使用要求。图2-12 平键连接的受力分析2.10.2下轴平键的选择与校核(1)下轴安装平键处轴径为d80mm,查手册选择A型平键。确定键的宽度为b22mm、高度h

24、14mm轴上及轮毂上槽深t9mm,t15.4mm,(2)按轴的结构设计确定键长L200mm。(3)强度校核,键的主要失效形式为压溃、剪切。由于下轴几乎不受扭矩作用,可以忽略不计,所以键所受的力非常小,强度一定合格。2.11连续油管屈服强度校核连续油管的所受压强: (2-22)式中 S一套夹紧机构与连续油管接触的面积在夹紧力垂直方向的投影(mm2)。夹块与连续油管接触如图2-13所示。截面宽度 式中 r连续油管半径(mm);轴向长度由于两边导r2mm圆角 所以轴向长度 l47443mm 图2-13 夹块结构单个横截面积 sl×b43×31.271344.6mm2 一套夹紧机构中,同时有8个夹块作用连续油管连续油管所受压强外径为31.75mm的油管屈服压力=64.1MPa,P1。连续油管可以正常工作。2.12上下轴轴承设计由于注入头传递载荷大、工作可靠性要求高,加之为尽量减小支撑结构的空间和质量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论