CRC校验编程和硬件快速校验探讨_第1页
CRC校验编程和硬件快速校验探讨_第2页
CRC校验编程和硬件快速校验探讨_第3页
CRC校验编程和硬件快速校验探讨_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    CRC校验编程和硬件快速校验探讨摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTAC)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为126 MHz,阻带抑制率大于35 dB,带内波纹小于05 dB,采用18 V电源,TSMC 018m CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte引 言    循环冗余校验(Cyclic Re&

2、;mdancy Check,CRC)是最为常用的计算机和仪表数据通信的校验方法。CRC码是一种线性分组码,编码简单但具有很强的检错纠错能力。除了各种嵌入式仪表、变频器等设备,还有一些数字型传感器的输出数据也提供CRC码,如数字温度传感器DSl8820、集成温湿度采集芯片SHTll等。但是,各厂商所提供的CRC校验多项式(用于同通信码模除)互有差别,且有CRC一8和CRC一16之分。另外,规定模除余数初始值所有的位有全清0或全置1之分(其CRC硬件生成电路不同),故其模除求余的运算过程也不相同。初接触者往往难以领晤,省略CRC校验使通信的可靠性降低。而不少C语言程序,运算时需要使用较多的RAM单

3、元,较难在80C51、PIC16等低档单片机上运行。    因此,对于嵌入式系统中的CRC校验,事先根据特定的校验多项式,算出1字节数据范围所对应的256个余数,将其作为表格,编程写到程序存储器中查询而避免在线运算,已是非常通用的做法。鉴于此,有些厂商在说明书中就直接给出了这个列表。但如果是CRC一16校验,存储表格要占512字节(CRC一32则需要1 KB),对于有限的单片机ROM资源来说所占比例不小,往往只因为多装了此表,就不得不升级单片机的型号。    本文分析和解释了实际CRC校验码的生成特点,据此给出节省RAM和ROM且运算

4、快速的通用CRC校验编程思想和程序结构,并探讨了用少量硬件实现快速、可靠CRC校验的方法。1 CRC原理和实际校验码的反序生成特点    一个k位二进制数据在传送时,按一定规律附加一些冗余位而增大其码距,就能检错和纠错。标准CRC码是将原数据左移r位,再用r+1位的特别约定多项式(polynomial funetion)模除之,获得最多为r(8、16、32)位的余数,跟随原数据之后生成k+r位的编码发送。接收方再用相同的约定多项式,模除收到的数据,余数为O则传输无误,为其他值则对应各个位的出错。    但是对于实际应用,为加快通信速度

5、,r位的余数并不是每次都传输,而是采用累计模加(异或)的方法,不断地与下一个k位数据异或运算,组成新的中间余数(仍为r位,因一般选择rk),再被约定多项式模除得到新的余数值,依此类推,直到所有通信数据都同中间余数异或,再模除完为止。如此得到最终的r位余数,作为全组数据校验的CRC码附在该组数据之后发送。接收方以同样的过程,算得收到数组的最终余数,再同最后收到的CRC码对比(或将CRC码也作为数据,看最后余数是否为O)。当然这样只能查出该组数据的传输是否有错,而不能纠错。    首数据的余数是唯一的,再异或进后续的任何一个特定数据之后,结果依然唯一。所以只要选择r有

6、足够的位数,就能保证多个数据中一旦有个别位传输错误,其最终的CRC余数与传输正确的余数相等的可能性极低,因此能查出传输错误。    对于元器件和不少的设备来说,其最终余数,即组校验的CRC码,是靠硬件快速生成的。为了使硬件电路简化,也为了接收方易于校验编程,往往采用变形生成的CRC码和与其对应的校验处理方式。    对于模除余数的初始值,ISOIEC 13239标准规定各位(8、16、32)均置1,而DSl8820器件和一些控制仪表的通信CRC码却是清0。在软件编程时要根据不同器件赋予不同的初始值。   

7、 特别约定多项式g(x)都是r+1位的,如ISOIEC13239标准的CRC一8,g(x)=x8+x2+x+1。其最高位恒为1,将其隐含则可简化模除运算,但这样一来后面多位是O,较难在多字节(如16位需2字节)CRC校验中定位计算和存储。因此,大多数CRC码生成和校验的处理都采用将约定多项式反序的方法,即将最低位1放到最高位并丢弃最高次幂系数1,从而将运算和存储都降为r位。    对于CRC一8,g(x)=x8+x2+x+1,去高位反序后的模除数为11100000(OEOH),r=8。    对于CRC一16,g(x)=x16+x15

8、+x2+1,去高位反序后的模除数为OA001H,r=16。    对于CRC一CCITT,g(x)=x16+x12+x5+1,同样处理后的模除数为8408H,但也常用正序值1021H。    对于CRC一32,g(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1,处理后的模除数为0EDB88320H,r=32。    如上处理后,按理说被模除数和余数也应该反序。但这样的话r位的余数在同下一个k位数据模加时不但k位数据应反序,而且必须左端(最高位)对

9、齐进行异或,处理起来不但麻烦也容易出错。因此,实际CRC码的生成和校验一般仍是将余数,即被(模)除数,按正序排列,新数据也仍是右对齐异或进余数中。但是将被模除数原先的左移r位右添0改成了右移r位左添(r个)O。这相当于k+r位被模除数中仅r位被反序(放左端),而前面k位(现放于右端)依然正序。可以看出,按反序原则,实际上每一次都是异或进通信数据的反序值,如11001000B(0C8H)变为000100ll(13H),再异或进被模除数来求取CRC校验码。但由于所有二进制数的反序值都是唯一对应的,所以并不影响生成CRC码的唯一确定性,只是接收方需要按照同样的反序规则处理.2 嵌入式系统CRC校验的

10、编程    如上所述,k+r位的被模除数采用右移的方法不断地同反序的约定多项式对位模除,也就遵从了从高位向低位不断减余的除法规则。但由于不必求模除的商,因此只要将被模除数不断地右移位,与去掉最高位的反序约定多项式模减,求得余数即可。    但如果被模除数最低位右端的移出位是O,则无论从左端添进多少个O,也不够模除约定多项式(其隐含的最高位是1)。在此情况下该位的商是O,余数不变,不应再同约定多项式对位模减,而要继续左添O右移位,直到当前余数(被模除数)右移出的位值为1才够模除(商1),才可将余数再对位模减一次多项式。由此看出,将约定多

11、项式去掉最高位,可以使模减(异或)的计算位数r减少(一般r都正好是1字节位数的整数倍)。    由于被模除数是k+r位的,因此总共需要右移k位,即左添进尼个O,才能模除到最低位结束。得到的余数最多是r位(约定多项式为r+1位),再将它异或人一个新数据,作为新的被模除数。    每异或进一个数据,求新一轮CRC码,都只进行走(字节数据是一8)次的右移和一般都少于是次的模减(异或)运算,而且模减的中间差值无需保留(后值覆盖前值)。因此CRC码生成的运算过程,就是右移位、判断移出位为1则同多项式模减(C语言不能对移出位检测,需将余数备份后同

12、0xol相“与”)、差值回存后再右移的是次循环过程,如图1所示。之后,再异或进下一个数据(该步与查表法一致)。编程得当的话运算量很小。    笔者用51汇编语言编写(2R(:一8校验程序,算得1字节数据的CRC码,只需6480个机器周期,只多用1字节RAM单元(CR(:一16校验多用2字节,时间加倍)来存储余数,即下一次的被模除数(不断覆盖上一次已无用的)。因此,完全可以直接运算,而不必存储大量的数据表格。C语言编程,要考虑语句代码的优化以及只定义使用int和char型局部变量,以免耗时和占用RAM单元太多。  接收方对于最后收到的r位CRC校

13、验码,不需要再纳入模除而使最终余数为O,只需同信息数据的模除余数比较,相等则确定通信正确。这样可以减少模除循环次数,节省时间。3 硬件CRC校验的探讨    器件或设备的说明书中,常给出其硬件CRC码的生成电路。以总线数字温度传感器DS18820为例,其8位CRC码生成电路如图2所示。对应该硬件电路,等效的模除多项式为:    g(x)=x2+x5+x4+1    该模除多项式反序后,再隐含最高位,其多项式的值为8CH。    8位移位寄存器的初始值清O(00H),通信数组数

14、据的每个字节低位在前,按位依次输入,当数据全部输入完成后,移位寄存器各个位的存储(输出)值就是所需的CRC校验码。    在实际应用中发现,Autonics等品牌的控制仪表,其通信CRC校验码与DSl8820的完全相同。    对应于图2的硬件生成电路,可用1片8D触发器(如74HC373)和1片4封装异或门(如74HCl36)连接而成,如图3所示。对于CRC赋初值OOH(74HC373清O)的操作,可先读出DOD7的随机值,然后将读出的数据再串行输入即可。因为相同的数据相异或总是为O,再除以任何多项式仍为O。  

15、  若MCU剩余足够的IO口,可将CRC码的DOD7位并行读入。否则,还需加一片74HCl65,将D0D7转换成串行数据读入。    以少量的硬件实现快速CRC,能节省单片机的运算时间和存储资源。用于发送端,能够快速获得CRC校验码,在系统其他任务很重时,能增强实时性。而用于接收端,除了上述优点之外,还能显著增强系统接收和确认信息的可靠性,适用于一些远程控制的执行装置(如变频驱动器、阀门定位控制器、重要的监测报警装置等)。这些装置对于接收到的数据或命令信息,一旦因误校验而不能正确地判断执行,其后果都是比较严重的。因此,要提高嵌入式系统的可靠性和实时性,硬件CRC校验是一种选择。结 语    本文在分析了常用CRC码的反序生成原理的基础上,给出了其编

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论