版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 线性方程组与矩阵 课程教案授课题目:第二节 矩阵概念与矩阵的初等变换教学目的:1掌握高斯消元法求解线性方程组2理解矩阵的概念、运算及其性质,掌握矩阵的初等行变换教学重点:本章以课堂教学为主,使学生掌握矩阵的初等行变换,提高学生的逻辑思维能力和计算能力教学难点: 初等行变换的运用课时安排:2学时授课方式:多媒体与板书结合教学基本内容:§1.2 矩阵概念与矩阵的初等变换1. 概念对线性方程组 (1其系数可用表示定义1 个数排列成行(横向)、列(纵向)的矩形数表: 称为矩阵,简记为,其中为中第行第列
2、的元素如是3行4列的矩阵这里,3×4是个记号,表明矩阵有3行4列的事实而不能取乘积“12”2. 一些特殊的矩阵1 行矩阵只有一行的矩阵 例2 列矩阵只有一列的矩阵 例3 零矩阵所有元素都等于0的矩阵例4 同型矩阵行数相同、列数也相同例与同型5 当时称 为阶方阵;所在的对角线称为方阵的主对角线6 主对角线下(上)方的元素全为零的方阵称为上(下)三角阵例为上三角阵;为下三角阵7 主对角线以外的元素全为零的方阵称为对角阵,记为,简记为8 数量阵对角阵中 例9 单位阵数量阵中,记以或例注(1) 只有1列或1行的矩阵分别称为列矩阵或行矩阵,也被称为列向量或行向量这样,它们就有了矩阵和向量的双重
3、“身份”作为向量,常用小写黑体字母a、b、等标记之,向量的元也称为分量,一个向量所含分量的个数称为维(是个数),如是个3维列向量,其实就是由3个数组成的一个有序数组维向量是个数的一个有序数组,亦即是个的列矩阵或的行矩阵列向量与行向量虽然只是写法上的不同,但我们还是与多数参考书一样约定:除非特别说明,说到向量一般均指列向量行向量则被记作aT或a 等(2)矩阵也称为阶方阵或阶矩阵,而1阶矩阵被约定当作“数”(即“元”本身)对待,当然“数”是不能当作1阶矩阵来对待的对阶矩阵,后面要讨论其行列式、是否为可逆阵、转置伴随阵、及特征值与对角化等种种问题等(3)单位阵、对角阵、三角阵是特别简单的一些方阵,在
4、今后讨论的基本运算中,它们各表现出一些简单特性,这就使它们在形成或训练解决问题的矩阵方法中都将有重要作用对线性方程组(1 称为(1的系数矩阵,称为(1的增广矩阵3. 矩阵的行(列初等变换定义2 矩阵的行(列初等变换: (1 对换矩阵的两行(列),用表示对换两行(列)的行(列)初等变换,即(); (2 用非零数乘矩阵的某一行(列),用表示以乘矩阵的第行(列)的行(列)初等变换,即;(3 将矩阵的某行(列乘以数再加入另一行(列)中去,用表示乘矩阵的第行(列)后加到第行(列)的行(列)初等变换
5、,即4. 矩阵的等价定义 将矩阵的行经有限次初等变换化为,称与等价,记作5. 行阶梯形矩阵与最简形矩阵定义3 若矩阵的零行(元素全为零的行)位于的下方,且各非零行(元素不全为零的行)的非零首元(第一个不为零的元素)的列标随行标的递增而严格增大,则称为行阶梯形矩阵定义4 若行阶梯形矩阵的各非零首元均为1,且各非零首元所在列的其余元素均为零,则称为最简形6. 用初等变换线性方程组的解1 将(1的增广矩阵用行初等变换化为最简形;2 由最简形对应的方程组得到解例1 求解下列齐次线性方程组:解(1对系数矩阵实施行变换:,即得,故方程组的解为例2 求解下列非齐次线性方程组:(1 (2 解(1对系数的增广矩阵施初等行变换,有故方程组无解(2对系数的增广矩阵施初等行变换:,即得,亦即参考书目:1. 贺铁山等,线性代数(第二版),中山大学出版社,2004年8月2吴赣昌,大学数学立体化教材:线性代数(经济类),中国人民大学出版社,2006年3月3同济大学应用数学系,工程数学(第四版),高等教育出版社,2003年7月
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020-2021学年湖南省五市十校教研教改共同体高一下学期期末考试地理试题
- 小学五年级数学小数乘除法计算练习题-集
- 《急性咽炎》课件
- 小学数学四年级上册《小数加减混合运算》教学设计
- 《行政法讲义》课件
- 《菱镁矿开采工艺》课件
- 护栏工程劳务作业内容及技术参数
- 《刑法分则的适用》课件
- 高校美术教育实践经验总结计划
- 小学班主任工作经历总结
- 2024旅行社承包经营合同
- 地下车库地面改造施工方案
- 成人有创机械通气气道内吸引技术操作标准解读
- 《护患沟通》课件
- 洗浴用品购销合同模板
- 电能质量-公用电网谐波
- 部编人教版道德与法治八年级上册:(1-4)单元全套练习题4套(含解析)
- 电火灶-编制说明
- 幼儿园幼小衔接方案模板
- 批评与自我批评表
- 2024年商用密码应用安全性评估从业人员考核试题库-中(多选题)
评论
0/150
提交评论