版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、分式方程的实际应用【重点难宜扃错点点点精通】、分式方程的应用分式方程的应用主要是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路 和方法是一样的。提示:(1)在实际问题中,有时题目中包含多个相等的数量关系;在列方程时一定要选择一个能够体 现全部(或大部分)题意的相等关系列方程.(2) 在一些实际问题中,有时直接设出题中所求的未知数可能比较麻烦,需要间接地设未知数, 或设一个未知数不好表示相等关系,还可设多个未知数,即设辅助未知数在上述过程中,关键步骤是根据题意寻找“等量关系”,同时,解出分式方程后注意必须检验求出的值是不是所列分式方程的解,且是否符合实际意义。、列分式方程解应用题
2、的步骤审审清题意,弄清已知量和未知量找找出等量关系设设未知数列列出分式方程解解这个分式方程验检验,既要检验根是否为所列分式方程的根,又要检验根是否符合实际问题的要求答写出答案三、常见题型及相等关系1. 行程问题基本量之间的关系:路程=速度刈寸间,即 s=vt常见的相等关系:2(1)相遇问题:甲行程 +乙行程=全路程(2)追及问题:(设甲的速度快)1同时不同地:甲用的时间 =乙用的时间甲的行程-乙的行程=甲乙原来相距的路程2同地不同时:甲用的时间 =乙用的时间-时间差甲走的路程=乙走的路程3水(空)航行问题:顺流速度 =静水中航速+水速逆流航速=静水中速度-水速2. 工程问题基本量之间的关系:工
3、作量 =工作效率 工作时间常见等量关系:甲的工作量 +乙的工作量=合作工作量工作问题常把总工程看作是单位1,水池注水问题也属于工程问题例题 1 经过建设者三年多艰苦努力地施工,贯通我市的又一条高速公路“遂内高速公路”于2012 年 5 月 9 日全线通车。已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5 倍,需要的时间可以比原来少用 1 小时 10 分钟。求小汽车原来和现在走高速公路的平均速度分别是多少?解析:首先设小汽车原来的平均速度为x 千米/时,则现在走高速公路的平均速度是1.5x 千米/时,由题意可得等
4、量关系:原来从遂宁到内江走高速公路所用的时间-现在从遂宁到内江走高速公路所用的时间=1 小时 10 分钟,根据等量关系列出方程,解方程即可。答案:设小汽车原来的平均速度为x 千米/时,则现在走高速公路的平均速度是1.5x 千米/时,150 150301根据题意,得1-,解这个方程,得 x=60。x 1.5x6经检验 x=60 是所列方程的解,这时 1.5x=1.5X60=90 且符合题意。答:小汽车原来的平均速度是60 千米/时,走高速公路的平均速度是90 千米/时。点拨:此题主要考查了分式方程的应用,关键是首先弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:行驶时间=路
5、程十速度。3例题 2 (湖北中考)我市水产养殖专业户王大爷承包了30 亩水塘,分别养殖甲鱼、鲑鱼。有关成本、销售额见下表:每亩成本(万兀)每亩销售额(万兀)甲鱼2.43鲑鱼22.5(1) 2010 年,王大爷养殖甲鱼 20 亩,鲑鱼 10 亩。求王大爷这一年收益多少万元?(2) 2011 年,王大爷继续用这 30 亩水塘全部养殖甲鱼和鲑鱼,计划投入成本不超过70 万元。若每亩养殖的成本、销售额和2010 年一样,要获得最大收益,他应该养殖甲鱼和鲑鱼各多少亩?(3) 已知甲鱼每亩需要饲料 500 千克,鲑鱼每亩需要饲料 700 千克。根据(2)中的养殖亩数, 为了节约运输成本,实际使用的运输车每
6、次装载的总量是计划的每次装载的总量的2 倍, 结果运输 养殖所需全部饲料比原计划减少 2 次。求王大爷原定的运输车辆每次可装载饲料多少千克?解析:这是市场经济中的确有可能发生的事情,是一个市场营销问题,是考试的热点;而且题目的信息是以表格的形式给出的,较新颖。所求当中还有利润,所以在题目表格的基础上加入与利 润相关的量。(2)小题每亩成本(万兀)每亩销售额(万兀)每亩的利润(万兀)养殖亩数甲鱼2.433-2.4=0.6x鲑鱼22.52.5-2=0.530-x(3)小题每辆车的装载量运输次数原计划a16000a实际2a160002a相差 2 次答案:(1)20 (3-2.4) 10 (2.5 -
7、 2)=17(万元)答:王大爷这一年收益 17 万元;(2)设养殖甲鱼 x 亩,则养殖鲑鱼(30-x )亩,设王大爷可以获得收益为y 万元,由题意得:42.4x 2 (30 - x)乞70,即x乞25,所以0乞x乞25。1y =0.6x 0.5 30 x,即y x 1510因为函数值 y 随着 x 的增大而增大,所以当x=25 时,可获得最大利润。即当王大爷养殖甲鱼25 亩,鲑鱼 5 亩时,获得的利润是最大的。答:要获得最大收益,应该养殖甲鱼25 亩,鲑鱼 5 亩;(3)设大爷原定的运输车辆每次可装载饲料a 千克由(2)得,共需要饲料为500 25 700 5二16000千克根据题意得:I60
8、00_型00= 2,解得:a=4000a 2a即王大爷原定的运输车辆每次可装载饲料4000 千克。答:王大爷原定的运输车辆每次可装载饲料4000 千克。不等式的应用近几年的分式方程应用题增加了难度,往往与不等关系结合在一起讨论求解。在解这类题目时,我们需要在题意中寻找“不等量关系”列出不等式求解,关键词如:“至少、最多、不小于、不大于、小于、大于等等”。例题 (哈尔滨中考)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10 天,且甲队单独施工 45 天和乙队单独施工 30 天的工作量相同。(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两
9、队共同工作了 3 天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的 2 倍,要使甲队总的工作量不少于乙队的工作量的2 倍,那么甲队至少再单独施工多少天?解析:(1)设乙队单独完成此项任务需要x 天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工 45 天和乙队单独施工 30 天的工作量相同建立方程求出其解即可;(2)设甲队至少再单独施工 a 天,根据甲队总的工作量不少于乙队的工作量的2 倍建立不等式求出其解即可。【拓展总结+提升藕分强读】5答案:(1)设乙队单独完成此项任务需要x 天,则甲队单独完成此项任务需要(x+10)天,由64530
10、题意,得 - 一,解得:x=20。经检验,x=20 是原方程的解, x+10=30 (天)x +10 x答:甲队单独完成此项任务需要30 天,乙队单独完成此项任务需要20 天;3 2a3(2)设甲队至少再单独施工 a 天,由题意,得2,解得:a 3。30 3020答:甲队至少再单独施工 3 天。点拨:本题是一道工程问题的运用,考查了工作时间x工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方。(答题时间:45 分钟)、选择题1. (莆田中考)甲、乙两班学生参加植树造林活动。已知甲班每天比乙班少植60 棵树所用天数与乙班植70 棵树所用天数
11、相等。若设甲班每天植树x棵,则根据题意列出方程正确的是()那么下面所列方程中正确的是(2 棵树,甲班植*2.某乡镇决定对一段长6070C.x -2x x -26070,6070- 二Jj . -二6000 米的公路进行修建改造x.根据需要,该工程在实际施工时增加了施工人员,每天修建的公路比原计划增加了50%结果提前4 天完成任务,设原计划每天修建 x 米,A.600060004 =x 1 50%B.60006000X1-50%4C.600060004 =x 150%D.60006000X1-50%4*3(梧州中考)父子两人沿周长为a 的圆周骑自行车匀速行驶。 同向行驶时父亲不时超过儿子,7而反
12、向行驶时相遇的频率增大为11 倍。已知儿子的速度为v,则父亲的速度为(A. 1.1vB. 1.2vC. 1.3vD. 1.4v8*4. (日照高考)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前 3 天完成任务,则甲志愿者计划完成此项工 作的天数是()A. 8B. 7C. 6D. 55.(鼓楼区二模)日本大地震前,中国出口到日本的蔬菜的销售利润率是47%。震后,由于国内经济形势的影响, 成本提高,而售价没变, 使得销售利润率降为 40%。蔬菜的成本提高的百分比是 注: 销售利润率=(售价-进价)十进价()A. 3%B. 5%
13、 C. 7%D. 4.35%二、填空题6.(成都中考)甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、 乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则 x 的值是 _。7.(庆阳中考)轮船先顺水航行 46 千米再逆水航行 34 千米所用的时间,恰好与它在静水中航行80 千米所用的时间相等,水的流速是每小时 3 千米,则轮船在静水中的速度是 _ 千米/ 时。三、解答题*8. (威海中考)小明计划用 360 元从大型系列科普丛书什么是什么 (每本价格相同)中选购 部分图书。“六一”期间,书店推出优惠政策:该系列丛书 8 折销售。这样,小明比原计划多
14、买了 6 本。求每本书的原价和小明实际购买图书的数量。*9. (徐州中考)为改善生态环境,防止水土流失,某村计划在荒坡上种 1000 棵树。由于青年志 愿者的支援,每天比原计划多种25%,结果提前 5 天完成任务,原计划每天种多少棵树?*10. (扬州中考)某校九( 1)、九( 2)两班的班长交流了为四川雅安地震灾区捐款的情况:(I)九(1)班班长说:“我们班捐款总数为 1200 元,我们班人数比你们班多 8 人。” ()九(2)班班长说:“我们班捐款总数也为 1200 元,我们班人均捐款比你们班人均捐款多 20%。”请根据两个班长的对话,求这两个班级每班的人均捐款数11. 一项工程,若甲单独
15、做,刚好在规定日期内完成,若乙单独做,则要超过规定时间 6 天完成; 现甲、乙两人合作 4 天后,剩下工程由乙单独做,刚好在规定日期内完成。问规定日期是几天?91. A 解析:本题需重点理解:甲班植 60 棵树所用的天数与乙班植 70 棵树所用的天数相等,等 量关系为:甲班植 60 棵树所用的天数=乙班植 70 棵树所用的天数,根据等量关系列式。设甲班每天植树 x 棵,则甲班植 60 棵树所用的天数为60,乙班植 70 棵树所用的天数为 卫-Xx + 2则有:60=丄匕,故选 A。x x +22. C 解析:求的是工作效率,工作总量是6000,则是根据工作时间来列等量关系。关键描述语是提前 4
16、 天完成,等量关系为:原计划时间-实际用时=4,根据等量关系列出方程。设原计划每天修建 x 米,因为每天修建的公路比原计划增加了50%所以现在每天修建 x( 1+50%)m600060004,即6000-46000,故选Cox 1 50%xx 1 50%3. B 解析:根据“同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11 倍”得出等式方程,求出即可。设父亲的速度为 x,根据题意得出:a一。解得:x=1.2v,故选 B。11(xv) x+v4. A 解析:工效常用的等量关系是:工效X时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作
17、,本题需注意甲比乙多做2 天。设甲志愿者计划完成此项工作需x 天,2x23x23甲前两个工作日完成了 一,剩余的工作日完成了,乙完成了x 2 3,xxx22 x -2 -3则 -2x23=1,解得 x=8,经检验,x=8 是原方程的解,故选Axx5. B 解析:由题意,要求蔬菜的成本提高的百分比,即为两者进价的差值与原来进价的比。从 而由题意解得。把 47%代入:47%=(售价-进价 1)十进价 1,把 40%代入:40%=(售价-进价 2)十进价 2,进价仁售价,进价2=售价1.471.410售价售价蔬菜的成本提高的百分比为进价2-进价y-4-了47 -片。/进价=售价= 5%1.47故选
18、B。16. 6 解析:根据题意,得到甲、乙的工效都是一根据结果提前两天完成任务,知:整个过程X中,甲做了( x-2 )天,乙做了( x-4 )天。再根据甲、乙做的工作量等于1,列方程求解。根据题X 2 x 4意,得4=1,得 x=6。经检验 x=6 是原分式方程的解。X x7. 20 解析:本题的等量关系为:逆水航行46 千米用的时间+顺水航行 34 千米所用的时间=静水航行 80 千米所用的时间.设船在静水中的速度是 x 千米/时。则344680,解得:x=20,经检验,x=20 是原方x -3 x +3 x程的解。8. 解:设每本书的原价为 x 元,根据题意,得 耍一色,解这个方程,得 x=15。经检验,0.8x xx=15 是所列方程的根,则360=30(本),所以,每本书的原价为15 元,小明实际购买图书0.8630 本。答:每本书的原价为 15 元,小明实际买图书 30 本。9. 解析:设原计划每天种树 x 棵,实际每天植树(1+25% x 棵,根据实际完成的天数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 结核分枝杆菌耐药检测技术选择-分子线形探针方法课件
- 二零二五年度车辆抵押贷款合同风险评估与报告合同4篇
- 2025年高科技大棚建设与农产品出口贸易合同4篇
- 2025版新车销售与绿色出行补贴政策应用合同范本3篇
- 深圳2025年广东深圳博物馆劳务派遣工作人员招聘6人笔试历年参考题库附带答案详解
- 河源2025年广东河源柏埔镇人民政府招聘编外人员笔试历年参考题库附带答案详解
- 昭通云南昭通市应急管理局招聘应急救援指战员和驾驶员12人笔试历年参考题库附带答案详解
- 成都四川成都市成华区市场监督管理局招聘编外聘用制工作人员笔试历年参考题库附带答案详解
- 宿州2025年安徽宿州市书画院引进高层次专业人才笔试历年参考题库附带答案详解
- 2025年度个人快递物流运输承包合同范本
- 2024版塑料购销合同范本买卖
- 2024-2025学年人教新版高二(上)英语寒假作业(五)
- JJF 2184-2025电子计价秤型式评价大纲(试行)
- GB/T 44890-2024行政许可工作规范
- 2024年安徽省中考数学试卷含答案
- 2025届山东省德州市物理高三第一学期期末调研模拟试题含解析
- 2024年沪教版一年级上学期语文期末复习习题
- 两人退股协议书范文合伙人签字
- 2024版【人教精通版】小学英语六年级下册全册教案
- 汽车喷漆劳务外包合同范本
- 微项目 探讨如何利用工业废气中的二氧化碳合成甲醇-2025年高考化学选择性必修第一册(鲁科版)
评论
0/150
提交评论