




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高三复习专题:三角函数的性质及三角恒等变形概述:三角函数的基础是平面几何中的相似形与圆,但研究的方法是采用代数中函数的研究方法和代数运算的方法,于是使三角函数成了联系几何和代数的桥梁,使它在几何和代数中都能有所作为。这无疑使三角函数在复数、立体几何和解析几何中有着广泛的应用。【考点梳理】一、考试内容1.角的概念的推广,弧度制。2.任意角的三角函数、单位圆中的三角函数、同角三角函数的基本关系、正弦、余弦的诱导公式。3.两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切。4.正弦函数、余弦函数的图像和性质、周期函数、函数y=Asin(x+)的图像、正切函数的图像和性质、已知三角函数值求角。5.
2、余弦定理、正弦定理。利用余弦定理、正弦定理解斜三角形。二、考试要求1.理解任意角的概念、弧度制的意义,并能正确地进行弧度和角度的换算。2.掌握任意角的三角函数的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系,掌握正弦、余弦的诱导公式,了解周期函数和最小正周期的意义,了解奇函数、偶函数的意义。3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。4.能正确地运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。5.了解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y= Asin(x+)的简图,理解A、的物理意义。6.
3、会由已知三角函数值求角,并会用符号表示。7.掌握余弦定理、正弦定理,并能初步运用它们解斜三角形。(2005年考纲删减知识点:“能利用计算器解决三角形的计算问题”)三、知识网络:【命题研究】分析近五年的全国高考试题,有关三角函数的内容平均每年有25分,约占17%,浙江省2004年高考试题这部分内容有17分,占总分11.3%。试题的内容主要有两方面;其一是考查三角函数的性质和图象变换;尤其是三角函数的最大值、最小值和周期,题型多为选择题和填空题;其二是考查三角函数式的恒等变形,如利用有关公式求植,解决简单的综合问题,除了在填空题和选择题中出现外,解答题的中档题也经常出现这方面的内容,是高考命题的一
4、个常考的基础性的题型。其命题热点是章节内部的三角函数求值问题,命题新趋势是跨章节的学科综合问题。数学试题的走势,体现了新课标的理念,突出了对创新能力的考查。如:福建卷的第17题设函数;(2)若函数的图象按向量平移后得到函数的图象,求实数的值。此题“重视知识拓宽,开辟新领域”,将三角与向量知识交汇。高考试题联系现行新教材,如全国(2)卷中的第17题:已知锐角三角形中,(1)求证:;(2)设,求边上的高,就与下列课本习题相接近,课本第一册(下)第四章三角函数的小节与复习例2:已知,求的值。【复习策略】三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出“和、差、
5、倍角公式”的作用,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点。第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本方法的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度。当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,难度以灵活掌握倍角的余弦公式的变式运用为宜。由于三角解答题是基础题、常规题,属于容易题的范畴,因此,建议三
6、角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势。总之,三角函数的复习应立足基础、加强训练、综合应用、提高能力。解答三角高考题的一般策略:(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。(2)寻找联系:运用相关三角公式,找出差异之间的内在联系。(3)合理转化:选择恰当的三角公式,促使差异的转化。三角函数恒等变形的基本策略:(1)常值代换:特别是用“1”的代换,如1=cos2+sin2=tanx·cotx=tan45°等。(2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+co
7、s2x;配凑角:=(+),=等。(3)降次,即二倍角公式降次。(4)化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。(5)引入辅助角。asin+bcos=sin(+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。第一课时【典型例题分析与解答】例1、 分析:对三角函数式化简的目标是: (1)次数尽可能低; (2)角尽可能少; (3)三角函数名称尽可能统一; (4)项数尽可能少。 观察欲化简的式子发现: (1)次数为2(有降次的可能); (2)涉及的角有、2、2,(需要把2化为,2化为); (3)函数名称为正弦、余弦(可以利用平方关系进行名称的统一); (4)共有3项
8、(需要减少),由于侧重角度不同,出发点不同,本题化简方法不止一种。 解法一: 解法二:(从“名”入手,异名化同名) 解法三:(从“幂”入手,利用降幂公式先降次) 解法四:(从“形”入手,利用配方法,先对二次项配方) 注在对三角式作变形时,以上四种方法,提供了四种变形的角度,这也是研究其他三角问题时经常要用的变形手法。例2、已知函数的图像过点,且b>0,又的最大值为,(1)求函数 的解析式;(2)由函数y=图像经过平移是否能得到一个奇函数y=的图像?若能,请写出平移的过程;若不能,请说明理由。解:(1),由题意,可得,解得,所以;(2) ,将的图像向上平移1个单位得到函数的图像,再向右平移
9、单位得到的图像,故将的图像先向上平移1个单位,再向右平移单位就可以得到奇函数y=的图像。注本题考查的是三角函数的图象和性质等基础知识,其是高考命题的重点内容,应于以重视。例3、为使方程在内有解,则的取值范围是() 分析一:由方程形式,可把该方程采取换元法,转化为二次函数:设sinx=t,则原方程化为,且,于是问题转化为:若关于的一元二次方程在区间上有解,求的取值范围,解法如下: 分析二: 解法如下: 注换元法或方程思想也是高考考查的重点,尤其是计算型试题。第二课时【典型例题分析与解答】例1、已知向量,(1)求的值;(2)若的值。解:(1)因为所以又因为,所以,即;(2) ,又因为,所以 ,所以
10、,所以点评本小题主要考查平面向量的概念和计算,三角函数的恒等变换的基本技能,着重考查数学运算能力平面向量与三角函数结合是高考命题的一个新的亮点之一例2、已知向量,向量与向量的夹角为,且,(1)求向量;(2)若向量与向量的夹角为,向量,其中为的内角,且依次成等差数列,求的取值范围。分析:本题的特色是将向量与三角知识综合,体现了知识的交汇性,这是高考命题的一个创新,也是高考命题的新趋势,关联三角形的三角解答题是高考命题又一个热点。解答本题应先翻译向量语言,脱去向量语言的外衣,这时问题(1)就转化为解方程组问题了,而问题(2)就化归为三角形中的三角函数问题了。解:(1)设,由,有向量与向量的夹角为,有,则由、解得:(2)由与垂直知,由若,则,例3如图,某园林单位准备绿化一块直径为BC的半圆形空地,ABC外的地方种草,ABC的内接正方形PQRS为一水池,其余的地方种花.若BC=a,ABC=,设ABC的面积为S1,正方形的面积为S2()用a,表示S1和S2;()当a固定,变化时,求取最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球及中国汽车动力转向泵行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国智能婴儿发声机行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球与中国赤松木防腐木行业发展现状及趋势预测分析研究报告
- 2025-2030全球与中国即食类预制菜行业市场发展分析及前景趋势与投资研究报告
- 2025-2030光端机产业发展分析及发展趋势与投资前景预测报告
- 2025-2030儿童自行车座椅行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030健康保险行业市场发展分析及发展趋势前景预测报告
- 2025-2030体检中心行业市场深度调研及发展规划与投资前景研究报告
- 2025-2030产品防伪产业政府战略管理与区域发展战略研究咨询报告
- 出租生态大棚合同样本
- 课题申报书:医学院校研究生“导学思政”创新实践路径研究
- 2025年游泳教练资格认证考试理论试题集(初级)
- 2025年国企山东济南公共交通集团有限公司招聘笔试参考题库附带答案详解
- 高二入团考试试题及答案
- 福建省漳州市医院招聘工作人员真题2024
- 湖北省圆创教育教研中心2025届高三三月联合测评物理试题及答案
- 科室医疗质量管理小组职责
- 陈仓《我有一棵树》阅读答案
- 铜绞线接地施工方案
- 2025年开封大学单招职业适应性测试题库新版
- 【WGSN】2025秋冬欧洲站童装趋势洞察
评论
0/150
提交评论