多源交通信息融合技术_第1页
多源交通信息融合技术_第2页
多源交通信息融合技术_第3页
多源交通信息融合技术_第4页
多源交通信息融合技术_第5页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、多源交通信息融合技术多源交通信息融合技术在智能交通诱导系统中的应用研究宋鸿 陈宁 彭建国 蒋程 刘玉印由于特殊的地理条件和历史原因,重庆市道路交通信息采集设备形式多样,形成的交通信息数据格式和设备数据接口标准不尽相同,多源交通信息数据的存储、处理和使用过程中遇到了诸多困扰。为此,重庆市交通管理局与重庆市科委共同谋划了“重庆主城区交通诱导示范工程”项目,将多源交通信息数据融合技术作为项目研究的重点,采用数据融合技术对多源交通信息数据进行处理,通过判别算法实现对道路交通状态的实时判别,并利用VMS 、 WEB 等多种形式进行道路交通状态的发布,从而实现对主城区路网交通流进行策略性分流的目标。一 、

2、研究背景目前, 重庆市已经建成的交通信息采集方式包括:感应线圈监测、微波测速、地磁监测、浮动车运营GPS监测、电子警察卡口、RFID 监测、视频监控等。由于交通信息采集方式多样,形成的信息数据格式和设备数据接口标准不尽相同,多源交通信息数据在具体应用过程中遇到了多方面的困扰。在此背景下,重庆市科委和重庆市公安局交通管理局共同确定了重大科技 攻关项目“重庆主城区交通诱导示范工程”,针对重庆 市主城区的主干复杂路网,以多源道路交通信息数据 融合技术为研究对象,确定在渝中区和江北区范围内, 建设长度为26公里的主干道智能交通诱导示范线路, 通过对重庆市已建成的多源交通信息数据进行融合, 实现对目标路

3、段的交通状态参数的实时获取,采用多 源数据融合算法和基于知识库的道路交通状态判别算 法,完成对道路交通状态的科学判断,并利用布置于 路段VMS交通诱导情报板和LED诱导屏进行实时的 发布,通过对道路上交通出行者的诱导,促进交通流 在路网中的均衡分布。二、多源数据融合及道路状态判别技术多源交通信息数据融合处理流程如图 1所示: 信 J道路状态发布模块GIS地图匹配模块HL 上JI视频监控反馈和人工数据融合 1I二 道路状态判别模块I卷与 I受判 动态权值调整分配模块I中别 -ia 多源数据自动融合算法模块II 鼠数据上块数据处理模块数据处理/云!模块I 数据处理模块数据处!里模块(用|集理 断面

4、线圈FCD 微波监测 卡口监测 视频监控 地磁监测II图1多源数据融合处理流程图从图 1 可看出,交通诱导系统采用传统的信息采集及处理、数据融合及判别和信息发布,通过线圈、微波、电子标签、地磁检测以及视频等采集设备采集车流量等相关信息;信息处理部分由指挥中心交通诱导控制系统完成;信息发布部分的主要信息发布载体为为 LED 诱导屏和VMS 复合诱导屏。(一)信息数据融合处理流程1、数据采集及预处理数据采集子系统主要包含动态交通信息采集建设、静态交通信息采集建设、信息处理与传输软硬件环境建设三项主要功能。通过动态数据采集接口层与各子系统建立连接并进行数据采集,采集到的数据按照事先制定好的标准数据格

5、式统一存储,海量数据存储采用数据仓库形式。主要完成对多源数据的预处理功能,包括对速度异常数据、超出地图匹范围数据、状态异常设备的上传数据等的分析和剔除处理。2、二级数据融合与判别核心模型和算法是该项目的核心内容,通过核心模型与算法,对信息进行处理分析,生成高效的交通诱导预案与道路信息,同时根据视频监控和人工反馈信息,实现对部分路段的道路交通状态的二次数据融合。该部分主要由两部分组成,即“交通拥堵等级评判算法 ”和 “交通事件识别算法”。“交通拥堵等级评判算法”就是根据当前的交通流特征信息,结合交通知识将交通拥挤程度进行等级划分,以量的形式告诉人们目前的交通拥挤情况。交通拥挤程度是一个模糊的概念

6、,形容一个交通状态是否拥挤并没有很确切的数据,因此通常采用模糊推理的方式来评判交通拥堵状态。模糊推理法原理是根据交通流量、占有率和交通拥挤状态之间的关系组成模糊规则矩阵,然后利用交通流量、占有率的实测数据作为输入, 通过一系列的模糊运算推断出交通拥堵状态。“交通事件识别算法”就是利用交通事件发生时的特征和采集到的交通流参数,如车道占有率、平均速度、流量等交通参数,通过一定的检测规则和算法,推断出是否发生交通事件的过程。3、信息发布完成对道路交通状态数据的发布功能,发布途径主要有 GIS 地图的发布路段渲染、VMS 屏的道路状态发布等。(二)二级数据融合模型二级数据融合模型是根据系统在实际的实施

7、中,自动融合不能够满足有效反映部分路段的交通状态,即某些特殊路段的交通状态通过检测器获取的数据不能有效反映,需要人工辅助来弥补其不足。1、第一级多源数据的自动融合自动融合模型是通过在系统中的算法和数据处理程序,完成对断面线圈数据(流量、速度、车道占有率) 、微波数据(流量、速度、车道占有率)、 RFID 数据(行程速度、行程时间)、地磁(流量、速度、占有率等) 、卡口(流量、占有率等)、浮动车数据(流量、速度、占有率等)等的初步分析和道路状态的数据融合判定, 并由诱导系统的VMS 发布程序完成道路交通状态的发布功能。2、第二级自动融合和人工管控互补性融合自动融合在某些特定路段有一定的局限性,不

8、能够很好的反映路段由于地理位置、道路坡度等造成的交通特点,需要人工管控来辅助,实现对根据道路监测和人工监控结合的判定模式,这种情况的路段比较少,不会增加太多的人力资源。(三)基于知识库的道路状态判别修正机制系统建立了基于历史知识库的道路状态判别修正机制,即实时判别结果与历史数据有个比对修正的机制 ,系统要正常运行一段时间后,积累了大量的历史道路状态判别数据作为知识的积累,发布结果会越来越精确,从而满足城市交通的需求。(四)动态权值调整机制多源数据融合通过权值分配机制实现对道路路段交通状态的实时判别,将多源数据输入道路状态判别模型,依据上一时段的道路状态数据进行权值的动态分配,并进行数据融合处理

9、和道路交通状态的判别,通过人工反馈和与历史数据库的比对,对道路状态异常数据回馈到道路状态判别模型,进行权值的动态分配,从而保证道路状态发布的准确性。(五)数据融合及交通状态判别算法模型1、融合算法模型介绍利用每个发布路段上每5分钟累积的车辆点速度,经过数据预处理,计算平均车速,通过设计规则来反应路段的交通状况。对于样本不足的路段,利用历史数据或邻近时间段的交通状况的统计规律,弥补样本覆盖的不足。1)交通状态参数估计:对表征交通状态的参数,如平均行程车速等进行估计。输入路段检测器数据(流量、点速度、占有率等);FCD 数据(浮动车的经纬度、方向角、速度等)RFID ( OD 数据) ;微波(流量

10、、速度、占有率等);地磁(流量、速度、占有率等)卡口(流量、占有率等)上一时段交通参数(样本量不足时)历史数据(样本量不足时)输出路段平均行程速度、路段2 分钟流量统计、路段占有率统计;2)交通状态判别:根据交通状态参数估计值,以及道路交通状态分类分级的标准,对道路交通状态作出判别。输入融合交通参数(平均行程速度)、流量数据、占有率数据输出VMS 屏各发布路段的道路交通状态值3)多源数据融合算法模型针对多源道路监测数据的融合处理,这里以两种以上的检测器的速度数据的融合处理方式为例:nv(t)i(t)*vi(t)i1式中:v为t时段内融合后的速度数据,t取2min作为统计时段;i为采用第i种数据

11、采集方式的权重值;,为采用第i中数据采集方式获得的行程速度 数据;同时引入动态误差反比例方法作为反馈控制信 号,来实现多源数据权值的动态调整和分配功能,(t)v i( t)vi( t) - vi(t -1)并对上式进行归一化处理,如下式:i(t) n ii (t)i 12、道路交通状态判别技术1)道路交通状态根据实际道路的等级,采用了三 级判断标准,采用计算的融合区间行程车速作为判别 计算依据:表1道路交通状态判断标准道路等 级堵塞状态 (0)拥挤状态 (1)畅通状态 (2)城市快 速路v 20km/h20 km/h < v < 50 km/h> 50 km/h城市主 干路&

12、lt;10km/h10 km/h < v v 30 km/h> 30 km/h城市次 干路<10km/h10 km/h < v < 25 km/h> 25 km/h2)引入路段流量来判定道路状态,根据各道路通 行状况确定路段的流量判定阀值,进行判定,依照判 定逻辑进行综合的判定,确保状态数据判别的可靠性。3)通过对路段的占有率数据进行分析,制定判定 逻辑,实现对道路交通状态的判别,并根据知识库历 史数据进行动态修正。在道路交通状态判别并发布时,需要引入阻抗参 数概念,即发布状态时,交通状态由堵塞变为畅通时 无需进行额外判别;但当交通状态由畅通变为阻塞, 则需

13、前一时段状态进行判定。记上一时段路段状态值为so,本时段路段计算状态为Si ,则:发布状态s ; S° Si 1Si, 其匕三、系统实证性分析及功能实现(一)实证方式及分析为了对系统的实施效果进行评判,本系统采取人 工判别的方法获取真实的道路交通状态信息,并与系 统的评判结果进行比对分析。根据人工判别所基于的 设施设备不同,又可以分为视频判别与现场判别两种:1、视频判别在视频监控室,根据不同监控摄像头中显示的道 路车辆集散情况,由交警凭借实际经验,判别对应道 路的交通状态。2、现场判别在道路设定的监测点观察一段时间形成路段状态 的调研记录。根据车流通行情况,判别所驶过道路的 交通状态

14、。为了调研系统发布的路况信息在不同的日期与时 段的精度稳定性,实证选取了周四、周五、周六三天 的早、晚、平峰,抽样20条发布路段,共计10080条 交通状态信息,进行实证对比分析,结果如图2和图3 所示:图2现场判别与发布路况符合次数13视版判别0发加脩况埼今次放图3视频判别与发布路况符合次数 经过以上对系统发布状态信息的准确性及其影响因素 的实地调研实证分析,得到以下结论:(1)系统发布的路况信息总体准确性较高,系统 发布路段信息通过与现场观测和视频判别状态比对达 到95项上,其中现场交通状况判别结果与系统判别结 果吻合度达到95.63%,视频交通状况判别结果与系统 判别结果达到96.25%

15、。(2)交通诱导系统发布的部分路段状态异常,是 部分监测点数据样本量不足导致实际的现场观测和视 频判别状态出现差异,通过对路段和检测器进行调整 和部署,路段状态发布可以恢复正常。(二)诱导系统实现效果图 4 诱导系统效果图系统包括信息采集功能、诱导处理功能、实时诱导功能、信息发布功能。通过对道路上交通流信息的实时采集,获得路网的车流量、占有率、车流平均速度、长车流量等交通状况信息。通过核心模型与算法,对信息进行处理分析,生成高效的交通诱导预案与道路信息。由信息发布系统对外发布,为出行者提供道路信息。系统软件展示应用层具有如下功能:(1)VMS诱导发布控制生成VM弦时动态诱导信息,进行交通诱导服务( 2) 中心大屏控制功能实时道路交通状态监控,实现状态监控。(3)WE喷布功能公众出行信息服务,信息发布功能。( 4) 系统管理功能设备管理与数据信息分析。四、结语由于重庆市特殊的地理条件和道路交通环境的影响,建设智能交通系统,提高交通管理的现代化水平,促进交通流在道路交通网络上的均衡分布,进而提高交通基础设施的利用率,缓解交通供需矛盾,成为重庆市解决交通问题的首要选择,而多源交通信息数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论