版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、最新高三数学复习知识点整理五篇分享 高三学生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的复习方法。下面就是松鼠给大家带来的高三数学复习知识点,希望大能帮助到大家!高三数学复习知识点 、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、C、来表示。元素常用小写字母a、b、c、来表示。 集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。 2、元素与集合的关系元素与集合的关系有属于和不属于两种
2、:元素a属于集合A,记做A;元素a不属于集合A,记做a?。 3、集合中元素的特性 (1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如0,1,4,可知0,6?A。()互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。(3)无序性:集合与其中元素的排列次序无关,如集合a,b,c与集合c,b,a是同一个集合。 4、集合的分类 集合科根据他含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元
3、素个数是可数的,因此两个集合是有限集。 无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。 特别的,我们把不含有任何元素的集合叫做空集,记错F,如x?R+=0。 、特定的集合的表示 为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。 (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做。 (2)非负整数集内排出0的集合,也称正整数集,记做或N+。 (3)全体整数的集合通常简称为整数集Z。 (4)全体有理数的集合通常简称为有理数集,记做Q。()全体实数的集合通常简称
4、为实数集,记做R。高三数学复习知识点一、充分条件和必要条件 当命题“若则B”为真时,A称为B的充分条件,B称为A的必要条件。 二、充分条件、必要条件的常用判断法 1定义法:判断B是A的条件,实际上就是判断B=或者=B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可 2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。 3.集合法在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为、,则: 若?B,则p是的充分条件。 若A?,则是q的必要条件。 若A=B,则p是q的充要条件。 若A?B,且B
5、?A,则p是q的既不充分也不必要条件。三、知识扩展 1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为: (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;()交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成
6、立的充分条件可以不止一个,必要条件也可以不止一个。 高三数学复习知识点3 ()先看“充分条件和必要条件” 当命题“若p则q”为真时,可表示为p=,则我们称p为q的充分条件,q是的必要条件。这里由pq,得出p为q的充分条件是容易理解的。 但为什么说q是p的必要条件呢? 事实上,与“p=q”等价的逆否命题是“非=非p”。它的意思是:若q不成立,则p一定不成立。这就是说,对于是必不可少的,因而是必要的。 (2)再看“充要条件” 若有=,同时q=p,则p既是的充分条件,又是必要条件。简称为p是q的充要条件。记作;=q 回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从
7、命题B成立也可以推出命题A成立,那么称A等价于B,记作l;B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题等价于命题B,那么我们说命题A成立的充要条件是命题成立;同时有命题B成立的充要条件是命题A成立。 (3)定义与充要条件数学中,只有A是的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。 “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示
8、“充分”。“仅当”表示“必要”。 (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。 高三数学复习知识点4 1有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律-充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想
9、象能力。2.判定两个平面平行的方法: (1)根据定义-证明两平面没有公共点; ()判定定理-证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”;(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”; ()两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面; (5)夹在两个平行平面间的平行线段相等;(6)经过平面外一点只有一个平面和已知平面平行。 高三数学复习知识点5
10、高考试题重在考查对知识理解的准确性、深刻性,重在考查知识的综合灵活运用。它着眼于知识点新颖巧妙的组合,试题新而不偏,活而不过难;着眼于对数学思想方法、数学能力的考查。高考试题这种积极导向,决定了我们在教学中必须以数学思想指导知识、方法的运用,整体把握各部分知识的内在联系。只有加强数学思想方法的教学,优化学生的思维,全面提高数学能力,才能提高学生解题水平和应试能力。 高考复习有别于新知识的教学。它是在学生基本掌握了中学数学知识体系、具备了一定的解题经验的基础上的复课数学,也是在学生基本认识了各种数学基本方法、思维方法及数学思想的基础上的复课数学。其目的在于深化学生对基础知识的理解,完善学生的知识
11、结构,在综合性强的练习中进一步形成基本技能,优化思维品质,使学生在多次的练习中充分运用数学思想方法,提高数学能力。高考复习是学生发展数学思想,熟练掌握数学方法理想的难得的教学过程。 高考复习中数学思想方法教学的原则。 1、把知识的复习与思想方法的培养同时纳入教学目的原则。各章应有明确的数学思想方法的教学目标,教案中要精心设计思想方法的教学过程。 、寓思想方法的教学于完善学生的知识结构之中、于教学问题的解决之中的原则。 知识是思想方法的载体,数学问题是在数学思想的指导下,运用知识、方法加工的对象。皮之不存,毛将焉附?离开具体的数学活动的思想方法的教学是不可能的。 3、适当章节的强化训练与贯通复课全程的反复运用相结合的原则。 数学思想方法与数学知识的共存性、数学思想对数学活动的指导作用、被认知的思想方法只有在反复的运用中才能被真正掌握这一教学规律,都决定了成功的思想方法和教学只能是有意识的贯通复课全程的教学。特别是有广泛应用性的数学思想的教学更是如此。如数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学《教育学基础》2021-2022学年第一学期期末试卷
- 吉首大学《大数据框架技术》2021-2022学年期末试卷
- 吉林艺术学院《音乐鉴赏》2021-2022学年第一学期期末试卷
- 吉林艺术学院《色彩构成》2021-2022学年第一学期期末试卷
- 吉林艺术学院《合唱团Ⅴ》2021-2022学年第一学期期末试卷
- 民宿租房承包协议书范文范本
- 2024年大宗贸易柴油合同范本
- 吉林师范大学《新闻评论写作》2021-2022学年第一学期期末试卷
- 发放贷款代偿协议书范文范本
- 2024年部编版高考语文一轮复习必背重点:古代文化常识
- 2024年电梯安全总监安全员考试题参考
- 学习解读2024年《关于深化产业工人队伍建设改革的意见》课件
- 2024年中国汽车基础软件发展白皮书5.0-AUTOSEMO
- 车站调度员(高级)技能鉴定理论考试题及答案
- 浪潮人力岗在线测评题
- 期中 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 贸易公司聘用劳动合同书(3篇)
- 岭南版2年级上册美术 9我家的菜篮子 说课 教案
- 初二体育与健康(400米跑)教学设计
- 中国联合网络通信有限公司招聘笔试题库2024
- 《ISO 55001-2024资产管理-资产管理体系-要求》之1:“4 组织环境-4.1理解组织及其环境”解读和应用指导材料(雷泽佳-2024)
评论
0/150
提交评论