药物动力学模型 数学建模_第1页
药物动力学模型 数学建模_第2页
药物动力学模型 数学建模_第3页
药物动力学模型 数学建模_第4页
药物动力学模型 数学建模_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、药物动力学模型一般说来,一种药物要发挥其治疗疾病的作用,必须进入血液,随着血流到达作用部位。药物从给药部位进入血液循环的过程称为药物的吸收,而借助于血液循环往体内各脏器组织转运的过程称为药物的分布。药物进入体内以后,有的以厡型发挥作用,并以厡型经肾脏排出体外;有的则发生化学结构的改变-称为药物的代谢。代谢产物可能具有药理活性,可能没有药理活性。不论是厡型药物或其代谢产物,最终都是经过一定的途径(如肾脏、胆道、呼吸器官、唾液腺、汗腺等)离开机体,这一过程称为药物的排泄。有时,把代谢和排泄统称为消除。药物动力学(Pharmacokinetics)就是研究药物、毒物及其代谢物在体内的吸收、分布、代谢

2、及排除过程的定量规律的科学。它是介于数学与药理学之间的一门新兴的边缘学科。自从20世纪30年代Teorell为药物动力学奠定基础以来,由于药物分析技术的进步和电子计算机的使用,药物动力学在理论和应用两方面都获得迅速的发展。至今,药物动力学仍在不断地向深度和广度发展。药物动力学的研究方法一般有房室分析;矩分析;非线性药物动力学模型;生理药物动力学模型;药物药效学模型。下面我们仅就房室分析作一简单介绍。为了揭示药物在体内吸收、分布、代谢及排泄过程的定量规律,通常从给药后的一系列时间 (t) 采取血样,测定血(常为血浆,有时为血清或全血)中的药物浓度( C );然后对血药浓度时间数据数据(Ct数据)

3、进行分析。一 一室模型最简单的房室模型是一室模型。采用一室模型,意味着可以近似地把机体看成一个动力学单元,它适用于给药后,药物瞬间分布到血液、其它体液及各器官、组织中,并达成动态平衡的情况。下面的图(一)表示几种常见的给药途径下的一室模型,其中C代表在给药后时间t的血药浓度,V代表房室的容积,常称为药物的表观分布容积,K代表药物的一级消除速率常数,故消除速率与体内药量成正比,D代表所给刘剂量。图(a)表示快速静脉注射一个剂量D,由于是快速,且药物直接从静脉输入,故吸收过程可略而不计;图(b)表示以恒定的速率K,静脉滴注一个剂量D;若滴注所需时间为丅,则K=D/丅。图(c)表示口服或肌肉注射一个

4、剂量D,由于存在吸收过程,故图中分别用F和代表吸收分数和一级吸收速率常数。1. 快速静脉注射在图(a)中所示一室模型的情况下,设在时间t,体内药物量为x,则按一级消除的假设,体内药量减少速率与当时的药量成正比,故有下列方程: (5.1)快速静脉注射 恒速静脉滴注 口服或肌肉注射V,CV,CV,CV,C F (a)(b)(c)KKK 图(一) 初始条件为t=0,x=0,容易解得.(5.2)注意到房室的容积为V,故c=x/V;记t=0时血药浓度为,因此=D/V,则有.(5.3)这就是快速静脉注射(简称静注)一个剂量D时,符合一室模型的药物及其血药浓度随时间递减的方程。对方程3两边取对数得这表明在一

5、室模型的情况下,将实测的C_t数据在以t为横轴,为纵轴的坐标系上作图,各个数据点应呈直线散布趋势。据此,用图测法或最小二乘法拟合一条直线,其斜率为K,截距为,于是K和便可求得。当然,如果数据点的散布明显地不是呈直线趋势,则可断言不宜采用一室模型来解释该药物在快速静脉注射时的体内动力学过程。在实际应用中,表征药物消除快慢常用的参数是生物半衰期,记为/2,它是指药物浓度降至原定值的一半所需的时间。在方程(3)中令t=/2,C =/2,可得(5.4)可见半衰期是常数,且与消除速率常数成反比。例如,给一名志愿者一次静脉注射某药物100mg,测得给药后一些时刻的血药浓度见下表,和在坐标系上作出各数据点,

6、它们是呈直线散布趋势,故可采用一室模型。一次静注100mg所得数据t (h)C()lnCtlnC0.523612245.525.425.324.804.102.941.70841.69011.67151.56861.41101.07840.85423.38025.01449.411716.931825.88180.25493614457647.59.128061.4741769.25如用最小二乘法拟合如下的直线方程.(5.5)利用实测的C一t数据计算直线斜率和截距的公式为:.(5.6)其中n为C一t数据点的个数。将上表中的有关数据代入 (6) 式得b=-0.02744 a=1.7386于是,拟

7、合数据点的直线方程为lnC=1.7386-0.02744与方程 (4) 对照,便得和K的估计值为进而,可得该药物的生物半衰期和表观分布容积V为= 2.恒速静脉滴注在图 (b) 所示一室模型的情况不,体内药量x随时间t变化的微分方程如下: (5.7)在初始条件t=0,x=0之下,可得其解为 . (5.8)其中,这里T为滴注持续的时间。利用x=VC,由 (8) 式得 (5.9)这就是恒速静脉滴注期间,符合一室模型的药物浓度随时间递增的方程。假如t=丅时,所给剂量D滴注完毕,则此后的血药浓度便按静注射时的规律下降 (如图 二),不过此时初始浓度为,故滴注停止后的C一t方程(为区别起见,特记为) 如下

8、: . (5.10)由此可见,我们可以从滴注停止后测得数据,求得K和 V的估计值(和丅皆已知)假如滴注总是持续进行,则由(10)式可知,血药浓度将趋于一个极限,记作 . (5.11)这个血药浓度称为稳态浓度,又称坪水平。记在时刻t的血药浓度达到坪水平的分数为,则有 . (5.12)可见达到稳态的快慢取决于消除速率常数K或半衰期,与滴注速率K无关。例如,当滴注持续时间等于5倍半衰期时,由(12)式算得,此时血药浓度约为坪水平彻97。3. 口服或肌肉注射在图(c)所示一室模型的情况下,设在时刻t,体内药量为x,吸收部位的药量为,则可建立如下的微分方程组 (5.13)在初始条件t=0, =FD,x=

9、0之下,可解得 (5.14)从而血药浓度随时间变化的方程为 (5.15)令M=,则上式可写为 (5.16)在通常情况下,吸收比消除快的多,即,故对于足够大的t,血药浓度实际上是时间的单项指数函数,为区别起见,记为 (5.17)或 (5.18)据此可得K和M的估计值,然后计算足够大的t之前各个实测浓度与按 (5.17) 式推算的与C值之差称为“剩余浓度” : (5.19)或 (5.20)据此可得K的估计值。上述这种估计消除和吸收速率常数的方法称为剩余法。(二) 二室型二室模型是从动力学角度把机体设想为两部分,分别称为中央室和周边室。中央室一般包括血液及血流丰富的组织(如心、肝、肾等),周边室一般

10、指血液供应少,药物不易进入的组织(如肌肉、皮肤、某些脂肪组织等)。在快速静注的情况下常见的二室模型如图4-2 所示。图中代表中央室的容积,代表药物从中央室消除的一级速率常数,和分别代表药物从中央室到周边室和反方向的一级转运速率常数,其余符号同前。设在时刻t,中央室和周边室中的药物量分别为和,则可写出下列微分方程组: (5.14)在初始条件之下,可解得 (5.15)其中和由下列关系式决定: (5.16)通常规定。由于,故描述血药浓度随时间变化的方程为 (5.17)令 则有 (4.18) 根据(4.18)式,利用实测Ct数据,用剩余法或电子计算机作曲线拟合,可得、及A、B的值,而后按下列公式计算模

11、型参数: (4.19)这组公式不难从(4.17)、(4.18)式及A、B的定义导出。 (三) 多次给药 在临床药物治疗中绝大多数药物都需要多次给药,以使血药浓度在足够长的一段时间内处于安全,有效的治疗范围。因此,认识多次给药下血药浓度的变化规律是拟订合理的给药方案的基础。这里,我们只讨论一室模型多次重复静活的情况。 假定某药在快速静注下,符合一室模型的动力学规律,那末,每隔一段时间,静注一个剂量D时,血药浓度C随时间t将如何变化呢? 静注第一剂后,Ct关系为 其中,显然,最高浓度为,最低浓度为,记为 不难理解,静注第二剂后,则有 静注n剂后,就有 (5.21) (5.22)由此可知,重复静注n剂后,血药浓度随时间的变化规律为 (5.23)假如n充分大,使血药浓没达到稳态,那么,对 (5.22) 式取n的极限,使得稳态浓度的变化规律为 (5.24) 最高和最低稳态浓度分别为 (5.25) (5.26)在一个给药间隔时间内,平均稳在浓度为 (5.27)图4-4表示每隔6小时重复静注一个剂量D产生的Ct曲线最后,我们举一个实例。卡那霉素的治疗血药浓度范围通常为10-25/ml。假定该药在其个病人的生物半衰期为3小时,表观

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论