2015高考数学(文)(直线与圆锥曲线的位置关系)一轮复习学案_第1页
2015高考数学(文)(直线与圆锥曲线的位置关系)一轮复习学案_第2页
2015高考数学(文)(直线与圆锥曲线的位置关系)一轮复习学案_第3页
2015高考数学(文)(直线与圆锥曲线的位置关系)一轮复习学案_第4页
2015高考数学(文)(直线与圆锥曲线的位置关系)一轮复习学案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学案54直线与圆锥曲线的位置关系导学目标: 1.了解圆锥曲线的简单应用.2.理解数形结合的思想自主梳理1直线与椭圆的位置关系的判定方法(1)将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程,若>0,则直线与椭圆_;若0,则直线与椭圆_;若<0,则直线与椭圆_(2)直线与双曲线的位置关系的判定方法将直线方程与双曲线方程联立消去y(或x),得到一个一元方程ax2bxc0.若a0,当>0时,直线与双曲线_;当0时,直线与双曲线_;当<0时,直线与双曲线_若a0时,直线与渐近线平行,与双曲线有_交点(3)直线与抛物线位置关系的判定方法将直线方程与抛物线方程联立,消

2、去y(或x),得到一个一元方程ax2bxc0.当a0,用判定,方法同上当a0时,直线与抛物线的对称轴_,只有_交点2已知弦AB的中点,研究AB的斜率和方程(1)AB是椭圆1 (a>b>0)的一条弦,M(x0,y0)是AB的中点,则kAB_,kAB·kOM_.点差法求弦的斜率的步骤是:将端点坐标代入方程:1,1.两等式对应相减:0.分解因式整理:kAB.(2)运用类比的手法可以推出:已知AB是双曲线1的弦,中点M(x0,y0),则kAB_.已知抛物线y22px (p>0)的弦AB的中点M(x0,y0),则kAB_.3弦长公式直线l:ykxb与圆锥曲线C:F(x,y)0

3、交于A(x1,y1),B(x2,y2)两点,则|AB|x1x2|或|AB| |y1y2| ·.自我检测1抛物线y24x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是()A4 B3C4D82(2011·中山调研)与抛物线x24y关于直线xy0对称的抛物线的焦点坐标是()A(1,0) B.C(1,0) D.3(2011·许昌模拟)已知曲线1和直线axby10 (a、b为非零实数),在同一坐标系中,它们的图形可能是()4(2011·杭州模拟)过点的直线l与抛物线yx2交于A、B两点,O为坐标原点

4、,则·的值为()ABC4 D无法确定探究点一直线与圆锥曲线的位置关系例1k为何值时,直线ykx2和曲线2x23y26有两个公共点?有一个公共点?没有公共点?变式迁移1已知抛物线C的方程为x2y,过A(0,1),B(t,3)两点的直线与抛物线C没有公共点,则实数t的取值范围是()A(,1)(1,)B.C(,2)(2,)D(,)(,)探究点二圆锥曲线中的弦长问题例2如图所示,直线ykxb与椭圆y21交于A、B两点,记AOB的面积为S.(1)求在k0,0<b<1的条件下,S的最大值;(2)当|AB|2,S1时,求直线AB的方程变式迁移2已知椭圆的两焦点为F1(,0),F2(,0

5、),离心率e.(1)求椭圆的标准方程;(2)设直线l:yxm,若l与椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值探究点三求参数的范围问题例3(2011·开封模拟)直线m:ykx1和双曲线x2y21的左支交于A、B两点,直线l过点P(2,0)和线段AB的中点M,求l在y轴上的截距b的取值范围变式迁移3在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆y21有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由函数思想的应用例(12分)已知椭

6、圆C的方程为1 (a>b>0),双曲线1的两条渐近线为l1,l2,过椭圆C的右焦点F作直线l,使ll1,又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A,B.(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程及离心率;(2)求的最大值【答题模板】解(1)双曲线的渐近线为y±x,两渐近线夹角为60°,又<1,POx30°,tan 30°,ab.又a2b222,3b2b24,2分b21,a23,椭圆C的方程为y21,离心率e.4分(2)由已知,l:y(xc)与yx联立,解方程组得P.6分设,则,F(c,0

7、),设A(x0,y0),则(x0c,y0),x0,y0.即A.8分将A点坐标代入椭圆方程,得(c2a2)22a4(1)2a2c2,等式两边同除以a4,(e2)22e2(1)2,e(0,1),10分232 332(1)2,当2e2,即e22时,有最大值1,即的最大值为1.12分【突破思维障碍】最值问题是从动态角度去研究解析几何中数学问题的主要内容,一是在准确把握题意的基础上,建立函数、不等式模型,利用二次函数、三角函数的有界性、基本不等式解决;二是利用数形结合,考虑相切、相交的几何意义解决【易错点剖析】不能把转化成向量问题,使得运算繁琐造成错误,由2不会求最值或忽视e22<0这个隐含条件1

8、直线与圆锥曲线的位置关系是解析几何的重点内容之一,也是高考的热点,这类问题往往与函数、不等式、三角、向量等知识综合、交汇考查,而且对综合能力的考查显见其中因此解决此类问题需要有较广的知识面及较强的解决问题的能力2从题目类型上多见于与弦的中点、弦长、弦所在直线的斜率等有关的最值问题、参数范围问题基本思路就是直线方程与圆锥曲线方程联立消元得到形如ax2bxc0的方程,由韦达定理得x1x2,x1x2.然后再把要研究的问题转化为用x1x2和x1x2去表示最后,用函数、不等式等知识加以解决需要注意的就是要注意对隐含条件的挖掘,比如判别式0,圆锥曲线中有关量的固有范围等(满分:75分)一、选择题(每小题5

9、分,共25分)1(2011·菏泽调研)F1、F2是椭圆1 (a>b>0)的两个焦点,P是椭圆上任一点,从任一焦点引F1PF2的外角平分线的垂线,垂足为Q,则点Q的轨迹为()A圆 B椭圆 C双曲线 D抛物线2若双曲线1的渐近线上的点A与双曲线的右焦点F的距离最小,抛物线y22px (p>0)通过点A,则p的值为()A.B2 C.D.3(2011·武汉月考)已知直线l1:4x3y60和直线l2:x1,抛物线y24x上一动点P到直线l1和直线l2的距离之和的最小值是()A2 B3 C.D.4已知直线yk(x2) (k>0)与抛物线C:y28x相交于A、B两

10、点,F为C的焦点若|FA|2|FB|,则k等于()A.B.C.D.5斜率为1的直线l与椭圆y21相交于A、B两点,则|AB|的最大值为()A2 B.C.D.二、填空题(每小题4分,共12分)6(2011届合肥期末)若直线ykx1 (kR)与焦点在x轴上的椭圆1恒有公共点,则t的范围是_7P为双曲线x21右支上一点,M、N分别是圆(x4)2y24和(x4)2y21上的点,则|PM|PN|的最大值为_8(2010·全国)已知抛物线C:y22px(p0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B,若AM,则p_.三、解答题(共38分)9(12分)已知抛物线y

11、x23上存在关于直线xy0对称的相异两点A、B,求|AB|的长10(12分)(2010·天津)已知椭圆1(a>b>0)的离心率e,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(a,0),点Q(0,y0)在线段AB的垂直平分线上,且·4,求y0的值11(14分)(2011·江西)P(x0,y0)(x0±a)是双曲线E:1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜

12、率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求的值学案54直线与圆锥曲线的位置关系自主梳理1(1)相交相切相离(2)相交相切相离一个(3)平行一个2.(1)(2)自我检测1C2.C3.C4.B课堂活动区例1解题导引用直线方程和圆锥曲线方程组成的方程组解的个数,可以研究直线与圆锥曲线的位置关系,也就是用代数的方法研究几何问题,这是解析几何的重要思想方法方程组消元后要注意所得方程的二次项系数是否含有参数,若含参数,需按二次项系数是否为零进行分类讨论,只有二次项系数不为零时,方程才是一元二次方程,后面才可以用判别式的符号判断方程解的个数,从而说明直线与圆锥曲线的位置关系解

13、由得2x23(kx2)26,即(23k2)x212kx60,144k224(23k2)72k248.当72k248>0,即k>或k<时,直线和曲线有两个公共点;当72k2480,即k或k时,直线和曲线有一个公共点;当72k248<0,即<k<时,直线和曲线没有公共点变式迁移1D直线AB的方程为yx1(t0时不合题意,舍去),与抛物线方程x2y联立得x2x0,由于直线AB与抛物线C没有公共点,所以2<0,解得t>或t<.例2解题导引本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力“设而不求”

14、是解决直线与圆锥曲线交点问题的基本方法当所求弦为焦点弦时,可结合圆锥曲线的定义求解解(1)设点A的坐标为(x1,b),点B的坐标为(x2,b),由y21,解得x1,2±2,所以Sb|x1x2|2bb21b21.当且仅当b时,S取到最大值1.(2)由得(4k21)x28kbx4b240,16(4k2b21)|AB|x1x2|·2.又因为O到AB的距离d1,所以b2k21.将代入并整理,得4k44k210,解得k2,b2,代入式检查,>0.故直线AB的方程是:yx或yx或yx或yx.变式迁移2解(1)设椭圆方程为1 (a>b>0),则c,.a2,b1.所求椭圆

15、方程为y21.(2)由消去y得关于x的方程:5x28mx4(m21)0,则64m280(m21)>0,解得m2<5.(*)设P(x1,y1),Q(x2,y2),则x1x2m,x1x2,y1y2x1x2,|PQ| 2,解得m2,满足(*),m±.例3解题导引直线与圆锥曲线的位置关系从代数的角度来看,就是直线方程与圆锥曲线的方程组成的方程组有无解的问题,结合判别式研究,利用设而不求与整体代入等技巧与方法,从而延伸出一些复杂的参数范围的研究解由 (x1)得(k21)x22kx20.设A(x1,y1),B(x2,y2),则,1<k<.设M(x0,y0),由,设l与y轴

16、的交点为Q(0,b),则由P(2,0),M,Q(0,b)三点共线得b,设f(k)2k2k2,则f(k)在(1,)上单调递减,f(k)(2,1),b(,2)(2,)变式迁移3解(1)由已知条件,直线l的方程为ykx,代入椭圆方程得(kx)21,整理得x22kx10.直线l与椭圆有两个不同的交点P和Q等价于8k244k22>0,解得k<或k>.即k的取值范围为.(2)设P(x1,y1),Q(x2,y2),则(x1x2,y1y2),由方程,x1x2.又y1y2k(x1x2)2.而A(,0),B(0,1),(,1)所以与共线等价于x1x2(y1y2),将代入上式,解得k.由(1)知k

17、<或k>,故没有符合题意的常数k.课后练习区1A2.C3.A4.D5.C61,5)7.58.29解设直线AB的方程为yxb,由消去y得x2xb30,(3分)x1x21.于是AB的中点M(,b),且14(b3)>0,即b<.(6分)又M(,b)在直线xy0上,b1符合(8分)x2x20.由弦长公式可得|AB|3.(12分)10解(1)由e,得3a24c2.再由c2a2b2,得a2b.由题意可知×2a×2b4,即ab2.解方程组得所以椭圆的方程为y21.(4分)(2)由(1)可知A(2,0),且直线l的斜率必存在设B点的坐标为(x1,y1),直线l的斜率

18、为k,则直线l的方程为yk(x2)于是A,B两点的坐标满足方程组由方程组消去y并整理,得(14k2)x216k2x(16k24)0.由根与系数的关系,得2x1,所以x1,从而y1.设线段AB的中点为M,则M的坐标为(,)(6分)以下分两种情况讨论:当k0时,点B的坐标是(2,0),线段AB的垂直平分线为y轴,于是(2,y0),(2,y0)由·4,得y0±2.(8分)当k0时,线段AB的垂直平分线的方程为y(x)令x0,解得y0.由(2,y0),(x1,y1y0),·2x1y0(y1y0)()4,整理得7k22,故k±.所以y0±.(11分)综上,y0±2或y0±.(12分)11解(1)由点P(x0,y0)(x0±

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论