![SVPWM的原理及法则推导和控制算法详解_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/f0762f7c-0f36-46d1-817c-00f9292d0d45/f0762f7c-0f36-46d1-817c-00f9292d0d451.gif)
![SVPWM的原理及法则推导和控制算法详解_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/f0762f7c-0f36-46d1-817c-00f9292d0d45/f0762f7c-0f36-46d1-817c-00f9292d0d452.gif)
![SVPWM的原理及法则推导和控制算法详解_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/f0762f7c-0f36-46d1-817c-00f9292d0d45/f0762f7c-0f36-46d1-817c-00f9292d0d453.gif)
![SVPWM的原理及法则推导和控制算法详解_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/f0762f7c-0f36-46d1-817c-00f9292d0d45/f0762f7c-0f36-46d1-817c-00f9292d0d454.gif)
![SVPWM的原理及法则推导和控制算法详解_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/f0762f7c-0f36-46d1-817c-00f9292d0d45/f0762f7c-0f36-46d1-817c-00f9292d0d455.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、空间电压矢量调制 SVPWM 技术SVPWM 是近年发展的一种比较新颖的控制方法, 是由三相功率 逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波, 能够使输出电流波形尽 可能接近于理想的正弦波形。空间电压矢量 PWM 与传统的正弦 PWM 不同,它是从三相输出电压的整体效果出 发,着眼于如何使电机获得理想圆形磁链轨迹。 SVPWM 技术与 SPWM 相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降 低,旋转磁场更逼近圆形, 而且使直流母线电压的利用率有了很大提 高,且更易于实现数字化。下面将对该算法进行详细分析阐述。 1.1 SVPWM 基本原理SVPWM 的理论基础是平均值等
2、效原理, 即在一个开关周期内通 过对基本电压矢量加以组合, 使其平均值与给定电压矢量相等。 在某 个时刻, 电压矢量旋转到某个区域中, 可由组成这个区域的两个相邻 的非零矢量和零矢量在时间上的不同组合来得到。 两个矢量的作用时 间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时 间,使电压空间矢量接近按圆轨迹旋转, 通过逆变器的不同开关状态 所产生的实际磁通去逼近理想磁通圆, 并由两者的比较结果来决定逆 变器的开关状态,从而形成 PWM 波形。逆变电路如图 1-1 示。设直流母线侧电压为Ude,逆变器输出的三相相电压为 Ua、Ub、 Uc,其分别加在空间上互差120°的三相平
3、面静止坐标系上,可以定义三个电压空间矢量 UA(t)、UB(t)、Uc(t),它们的方向始终在各相的 轴线上, 而大小则随时间按正弦规律做变化, 时间相位互差 120°。假设Um为相电压有效值,f为电源频率,则有:U A(t) UmCOS() UB(t) U m cos(2 /3)(1-1)Uc(t) U m cos(2 /3)其中, 2 ft ,则三相电压空间矢量相加的合成空间矢量U(t)就可以表示为:U(t) UA(t) U B(t)ej2 /3Uc(t)ej4/33U mej (1-2)可见U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的 1.5倍, Um为相电压峰值,且以
4、角频率3 =2兀f按逆时针方向匀速旋转的空间 矢量,而空间矢量 U(t)在三相坐标轴(a, b, c)上的投影就是对称的 三相正弦量。图1-1逆变电路由于逆变器三相桥臂共有6个开关管,为了研究各相上下桥臂不 同开关组合时逆变器输出的空间电压矢量,特定义开关函数Sx(x a,b,c)为:Sx1上桥臂导通0下桥臂导通(1-3)(Sa、Sb、Sc)的全部可能组合共有八个,包括6个非零矢量Ul(001)、U aNU bNU dc ,U aN U cNUdc求解上述方程可得:6(010)、U3(011)、U4(100)、U5(101)、U6(110)、和两个零矢量 Uo(OOO)、U7(111),下面以
5、其中一种开关组合为例分析,假设Sx(x a,b,c) (100),此时(1-4)U aN U bN U cNUaN=2Ud/3、UbN二-Ud/3、UcN=-Ud /3。同理可计算出其它各种组合下的空间电压矢量,列表如下:表1-1开关状态与相电压和线电压的对应关系SaSbSc矢量符号线电压相电压U abUbcU caUaNUbNUcN000U0000000100U4U dc0023Udc13Udc1110U6U dcUdc0丄ud3 dc1ud3 dc-Ud3 dc010U20UdcUdc1-U dc31-U dc31 -Udc3011U30UdcUdc2_ U dc31_ U dc31_ U
6、 dc3001U100Udc1畀c13Udc23Udc101U5U dc0Udc13Udc23Udc13Udc111U7000000W(110)£(001乐蚀图1-3给出了八个基本电压空间矢量的大小和位置其中非零矢量的幅值相同(模长为2Udc/3),相邻的矢量间隔60°,而两个零矢量幅值为零,位于中心。在每一个扇区,选择相邻的两个电压T0Uref dtTxU0dtTx TTxU ydt*UodtTx Ty 0或者等效成下式:Uref *T Ux*TxUy*TyUo*To(1-5)(1-6)矢量以及零矢量,按照伏秒平衡的原则来合成每个扇区内的任意电压 矢量,即:其中,Uref
7、为期望电压矢量;T为采样周期;Tx、Ty、T0分别为 对应两个非零电压矢量 Ux、Uy和零电压矢量 U0在一个采样周期的 作用时间;其中U0包括了 U0和U7两个零矢量。式(1-6)的意义是, 矢量Uref在T时间内所产生的积分效果值和 Ux、Uy、U0分别在时 间Tx、Ty、T0内产生的积分效果相加总和值相同。由于三相正弦波电压在电压空间向量中合成一个等效的旋转电压,其旋转速度是输入电源角频率,等效旋转电压的轨迹将是如图1-3所示的圆形。所以要产生三相正弦波电压,可以利用以上电压向 量合成的技术,在电压空间向量上,将设定的电压向量由U4(100)位置开始,每一次增加一个小增量,每一个小增量设
8、定电压向量可以用 该区中相邻的两个基本非零向量与零电压向量予以合成,如此所得到的设定电压向量就等效于一个在电压空间向量平面上平滑旋转的电 压空间向量,从而达到电压空间向量脉宽调制的目的。1.2 SVPWM 法则推导三相电压给定所合成的电压向量旋转角速度为2 f,旋转一周所需的时间为T 1/ f ;若载波频率是fs,则频率比为 R fs/ f。这样将电压旋转平面等切割成R个 小 增 量,亦即设定电压向量每次增量的角度是:d 2 / R 2 f / fs 2 Ts/T(1-7)今假设欲合成的电压向量 Uref在第I区中第一个增量的位置,如 图1-4所示,欲用U4、U6、U0及U7合成,用平均值等效
9、可得:Uref Ts U4 T4 U6 T6(1-8)图1-4电压空间向量在第I区的合成与分解在两相静止参考坐标系(a,B)中,令Uref和U4间的夹角是B,由正弦定理可得:|U ref | COS|Uref |sinT4 1 U 4 1 T6 |U6 | COS 石T sT s3| U 6 | sinTs3轴(1-9)轴因为|U4|=|U6|=2Udc/3 ,所以可以得到各矢量的状态保持时间为:T4 mTsSinq)T6 mTSsin式中m为SVPWM调制系数,m 3 Uref Udc波基波峰值/载波基波峰值)而零电压向量所分配的时间为:T7=To=(Ts-T4-T6)/2或T 7=(T S
10、-T 4-T 6)(1-10)(调制比二调制(1-11)(1-12)得到以U4、U6、U7及Uo合成的Uref的时间后,接下来就是 如何产生实际的脉宽调制波形。在 SVPWM调制方案中,零矢量的 选择是最具灵活性的,适当选择零矢量,可最大限度地减少开关次数, 尽可能避免在负载电流较大的时刻的开关动作,最大限度地减少开关 损耗。一个开关周期中空间矢量按分时方式发生作用,在时间上构成一 个空间矢量的序列,空间矢量的序列组织方式有多种,按照空间矢量的对称性分类,可分为两相开关换流与三相开关换流。下面对常用的序列做分别介绍。1217 段式 SVPWM我们以减少开关次数为目标,将基本矢量作用顺序的分配原
11、则选 定为:在每次开关状态转换时,只改变其中一相的开关状态。并且对 零矢量在时间上进行了平均分配,以使产生的PWM对称,从而有效地降低PWM的谐波分量。当 5(100)切换至Uo(OOO)时,只需改 变A相上下一对切换开关,若由U4(100)切换至U7(111测需改变B、C相上下两对切换开关,增加了一倍的切换损失。因此要改变电 压向量 U4(100)、U2(010)、 Ui(001)的大小,需配合零电压向量 Uo(000),而要改变U6(110)、U3(011)、U5(100),需配合零电压向量 5(111)。这样通过在不同区间内安排不同的开关切换顺序,就可以获得对称的输出波形,其它各扇区的开
12、关切换顺序如表1-2所示。表1-2 Uref所在的位置和开关切换顺序对照序UREF所在的位置开关切换顺序三相波形图1区(0°WB60°)0-4-6-7-7-6-4-0 PTsJ0010001 1 1< 1>_T7/2 JT7/2f10 i 0101 一00:10 : 0ir丨|T0/2._T4/2.T6/2 十|"I丄丄1.T6/2_.qT T4/2 .b T0/2_h区(60°<0120 °)0-2-6-7-7-6-2-0 1Tsr00111 1 : 100000010011 1 11101011*_T0/2 亠 丄丁2/2
13、*_丁6/2+111-JT7/2+i_ T7/2亠I户T6/2十片T2/2T0/2-*.:!'如图所示,图中电压向量出现的先后顺序为Uo、U4、U6、U7、U6、U4、Uo,各电压向量的三相波形则与表1-2中的开关表示符号相对应。 再下一个Ts时段,Uref的角度增加一个d ,利用式(1-9)可以重新 计算新的To、T4、T6及T7值,得到新的合成三相类似新的三相波 形;这样每一个载波周期Ts就会合成一个新的矢量,随着B的逐渐增 大,Uref将依序进入第I、"、皿、W、V、W区。在电压向量旋转 一周期后,就会产生 R个合成矢量。122 5 段式 SVPWM对7段而言,发波对称
14、,谐波含量较小,但是每个开关周期有 6 次开关切换,为了进一步减少开关次数,采用每相开关在每个扇区状 态维持不变的序列安排,使得每个开关周期只有3次开关切换,但是 会增大谐波含量。具体序列安排见下表。表1-3 Uref所在的位置和开关切换顺序对照序"区(180°<0240° )1-3-7-7-3-1 00-1111000111110111111111-T1/2T3/2 丄T7/21亠T7/2亠T3/2 T1/2亠Ts区(240°<93Q0° )1-5-7-7-5-1 T I-011 1 111010011 10 1011L11111
15、 1 11111耳 T1/2.L T5/2_耳 T7 T7/2_.» T5/2耳 T1/?.! - ! ! 1 !切区(300°<93S0° )4-5-7-7-5-4 亠Ts-1011 1 11011001丨10011011 ; 11011»T4/2 .1 斗 T5/2 耳 T7/2 T7/2 冲 T5/2 . J斗 T4/2_>1II1:1.3SVPWM 控制算法通过以上SVPWM的法则推导分析可知要实现SVPWM信号的实时调制,首先需要知道参考电压矢量Uref(期望电压矢量)所在的区图1-4电压空间向量在第I区的合成与分解间位置,然后利用
16、所在扇区的相邻两电压矢量和适当的零矢量来合成参考电压矢量。图1-4是在静止坐标系(a,B)中描述的电压空间矢量图,电压矢量调制的控制指令是矢量控制系统给出的矢量信号Uref ,它以某一角频率3在空间逆时针旋转,当旋转到矢量图的某个60°扇区中时,系统计算该区间所需的基本电压空间矢量,并以此矢量所对应的状态去驱动功率开关元件动作。当控制矢量在空间旋转360°后,逆变器就能输出一个周期的正弦波电压。1.3.1合成矢量Uref所处扇区N的判断空间矢量调制的第一步是判断由U a和U B所决定的空间电压矢(Uref)量所处的扇区。假定合成的电压矢量落在第I扇区,可知其等价条件如下:0
17、<arctan(U/U «)<60 o以上等价条件再结合矢量图几何关系分析,可以判断出合成电压矢量。Uref落在第X扇区的充分必要条件,得出下表1-4:扇区落在此扇区的充要条件I-厂U a>0 , U 3>0 且 Ub/ U a<V3nU a>0 ,且 U 3 |U出U a<0 , U 3>0 且-U B/ U a<73IVU a<0 , U 3<0 且 Ub/ U «<V3VU 3<0 且-U B/|U a|> J3U a>0 , U 3<0 且-U 3U a<J3若进一
18、步分析以上的条件,有可看出参考电压矢量Uref所在的扇 区完全由UU a- U 3, -J3 U a- U B三式决定,因此令:5 UU 2UU(1-13)223UU3U22再定义,若U1>0,贝y A=1,否则A=0 ;若 U2>0,则 B=1 ,否则B=0 ;若U3>0,则C=1,否则C=0。可以看出A, B, C之 间共有八种组合,但由判断扇区的公式可知 A, B, C不会同时为1 或同时为0,所以实际的组合是六种,A ,B,C组合取不同的值对 应 着不同的扇区,并且是一一对应的,因此完全可以由 A, B, C的组 合判断所在的扇区。为区别六种状态,令 N=4*C+2*
19、B+A,则可以通 过下表计算参考电压 矢量Uref所在的扇区。表1-5 N值与扇区对应关系N315462扇区号In出IVV采用上述方法,只需经过简单的加减及逻辑运算即可确定所在的扇区,对于提高系统的响应速度和进行仿真都是很有意义的。1.3.2基本矢量作用时间计算与三相PWM 波形的合成在传统SVPWM算法如式(1-10)中用到了空间角度及三角函数, 使得直接计算基本电压矢量作用时间变得十分困难。实际上,只要充分利用U a和U 3就可以使计算大为简化。以 Uref处在第I扇区时 进行分析,根据图1-4有:Uos21TUsU refT sU dcT4sin30cos 3T6(1-14)sin -3
20、经过整理后得出:U Ts2U dcT4 -T632U Ts-U dc<3t1 632T 3U TI42UdcJ3U Ts1、3u T;3Ts3U2Udc2 UdcUdc23uTs 角sI 6U1Ude Ude(1-15)T进U2(1-16)T7 To 人 T4 人(7段)或T7 Ts T4 T(5段)同理可求得Uref在其它扇区中各矢量的作用时间,结果如表1-6所示。由此可根据式(1-13)中的U1、U2、U3判断合成矢量所在扇区,然后查表得出两非零矢量的作用时间,最后得出三相PWM波占空比,表1-6可以使SVPWM算法编程简易实现。为了实现算法对各种电压等级适应,一般会对电压进行标幺化
21、处 理,实际电压U U Ubase,U为标幺值,在定点处理器中一般为Q12格式,即标幺值为1时,等于4096,假定电压基值为base、勿严,Unom为系统额定电压,一般为线电压,这里看出.3基值为相电压的峰值以DSP的PWM模块为例,假设开关频率为fs,DSP的时钟为fdsp.根据PWM的设置要是想开关频率为fs时,PWM周期计数器的值为NTpwm二fdsp/fs/2,则对时间转换为计数值进行如下推导:其中U和U 为实际值的标幺值,令发波系数,Ksvpwm、2 NTpwmUnomdc同理可以得到Nt6Ksvpwm (KsvpwmU 2Nt6NTpwmT6TfsN T6NTpwmT6 fsNt6
22、NTpwmT 6 fsN T6NTpwmT4 fs NTpwmNTpwmN T4*UU dc3 NTpwmUbase1 NTpwm *少sU dc(3Ufs(U -dc、2 NTpwmUnomU)U base2N T4U dcKsvpwmUKsvpwmUU dc表1-6各扇区基本空间矢量的作用时间扇区时间1T 42U 2U dcTN 4Ksvpwm U 2T N4=T NxIT 6如s UU dc U 1Tn 6Ksvpwm U 1T N6=T NyT2J3tsnU 2U dcT N 2Ksvpwm U 2T N2=T NxT6屁-T N 6Ksvpwm U 3T N6=T NyU dcT2&
23、lt;J3TsU出U 1U dcTN 2Ksvpwm U 1T N2=T NxT3v'3TsU 3Tn 3Ksvpwm U 3T N3=T NyU dc<?TsIVT1U 1U dcT n 1Ksvpwm U 1T N1=T NxT3p3TsU 2T N 3Ksvpwm U 2T N3=T NyU dcVT1孙SU3U dcT N 1Ksvpwm U 3T N1=T NxT562U dcT N 5Ksvpwm U 2T N5=T NyT4凤U3U dcTN4Ksvpwm U 3T N4=T NxT5后SU!U dcTN 5Ksvpwm U!T N5=T Ny由公式(1-16)可知
24、,当两个零电压矢量作用时间为 0时,一个PWM周期内非零电压矢量的作用时间最长,此时的合成空间电压矢量幅值最大,由图1-5,可知其幅值最大不会超过图中所示的正六边 形边界。而当合成矢量落在该边界之外 时,将发生过调制,逆变器 输出电压波形将发生失真。在SVPWM调制模式下,逆变器能够输出的最大不失真圆形旋转电压矢量为图1-5所示虚线正六边形的内切圆,其幅值为:巨 2Udc3丄3Ud,即逆变器输出的不失真最大3°32正弦相电压幅值为 ©Ud ,而若采用三相SPWM调制,逆变器能3°输出的不失真最大正弦相电压幅值为Udc /2。显然SVPWM 调制模式下对直流侧电压利
25、用率更高,它们的直流利用率 之比为dc/ U dc1.1547,即SVPWM法比SPWM法的直流电压利用率提高了 15.47%UQ1g 100)绘人不:l皮 圆恶电压矢 开边界最大鶴值电Li(tWl)r<ioi>图1-5 SVPWM模式下电压矢量幅值边界如图当合成电压矢量端点落在正六边形与外接圆之间时,已发生过调制,输出电压将发生失真,必须采取过调制处理,这里采用一种 比例缩小算法。定义每个扇区中先发生的矢量作用为Tnx,后发生的矢量作用时间为T Ny。当Tx+Ty VTnPWM时,矢量端点在正六边形之内, 不发生过调制;当Tnx+TNy> TnPWM时,矢量端点超出正六边形
26、,发生过调制。输出的波形会出现严重的失真,需采取以下措施:设将电压矢量端点轨迹端点拉回至正六边形内切圆内时两非零矢量作用时间分别为 Tnx', TNy',则有比例关系:T NxT NxT NyT Ny(1-17)因此可用下式求得Tnx' , TNy', Tn0, Tn7:TTnxtI NxI NPWM(1-18)T Nx T NyT NyTT1 Ny1 NPWMT Nx T NyToT70按照上述过程,就能得到每个扇区相邻两电压空间矢量和零电压矢量的作用时间。当Uref所在扇区和对应有效电压矢量的作用时间确 定后,再根据PWM调制原理,计算出每一相对应比较器的值
27、,其运 算关系如下:taonTsTxTy 12bontaonTx(1-19)contbon同理可以推出5段时,在I扇区时如式,t aontbonTx(1-20)段数以倒三角计数,对应计数器的值以正三角计数,对应计数器的值Ty不同PWM比较方式,计数值会完全不同,两者会差 180度t cont bonN1、taonTNPWMNTPWM TNxTNy / 2N taonNTPWM TnxTNy /27NtbonTNPWM NtaonTNxN tbonN taonT NxNtconTNPWM NtbonTNyN tconN tbonT NyNtaonTNPWMN taon05NtbonTNPWMT NxN tbonT NxNtconTNPWMN tbonT NyN tconN tbonT Ny其他扇区以此类推,可以得到表1-7,式中Ntaon、Ntbon和Ntcon 分别是相应的比较器的 计数器值,而不同扇区时间分配如表1-7所示, 并将这三个值写入相应的比较寄存器就完成了整个SVPWM的算法。表1-7不同扇区比较器的计数值扇区123456TaNta onNtb onN tconNtc onN tbonNta onTbN tbonNta onN ta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度办公室租赁与咨询顾问服务合同
- 成本控制与降低运营成本指南
- 装卸承包合同协议年
- 建筑装饰装修行业指南
- 2023年宝安区积分入学规则
- 精装修公寓装修合同
- 货物运输代理合同书
- 医疗器械与药品研发技术作业指导书
- (高清版)DB2105∕T 001-2022 地理标志产品 连山关刺五加
- 2025年荆门道路客货运输从业资格证b2考试题库
- 2012年安徽高考理综试卷及答案-文档
- 《游戏界面设计专题实践》课件-知识点5:图标绘制准备与绘制步骤
- 自动扶梯安装过程记录
- MOOC 材料科学基础-西安交通大学 中国大学慕课答案
- 智慧供热管理系统方案可行性研究报告
- 帕金森病的言语康复治疗
- 中国城市居民的健康意识和生活方式调研分析报告
- 上海星巴克员工手册
- 猫狗创业计划书
- 复产复工试题含答案
- 部编版语文三年级下册第六单元大单元整体作业设计
评论
0/150
提交评论