相关性分析相关系数_第1页
相关性分析相关系数_第2页
相关性分析相关系数_第3页
相关性分析相关系数_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、v1.0 可编辑可修改相关系数是变量之间相关程度的指标.样本相关系数用r表示,总体相关系数用p表示,相关系数的取值一般介于-11之间.相关系数不是等距度量值,而只是一个顺序数据.计算相关系数一般需大样本.相关系数又称皮尔生氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标.相关系数用希腊字母丫表示,丫值的范围在-1和+1之间.丫0为正相关,000为负相关.0=0表示不相关;丫的绝对值越大,相关程度越高.两个现象之间的相关程度,一般划分为四级:如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关那么r呈负值,而r=-1时为完全负相关.完全正相关或负相关时,所有图点都在直线回

2、归线上;点子的分布在直线回归线上下越离散,r的绝对值越小.当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切.当r=0时,说明X和Y两个变量之间无直线关系.相关系数的计算公式为见参考资料.其中xi为自变量的标志值;i=1,2,n;为自变量的平均值,为因变量数列的标志值;为因变量数列的平均值.为自变量数列的项数.对于单变量分组表的资料,相关系数的计算公式见参考资料.其中fi为权数,即自变量每组的次数.在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式见参考资料.使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、汇xi、汇yi、汇、

3、汇xiy1、丫等数值,不必再列计算表.简单相关系数:又叫相关系数或线性相关系数.它一般用字母r表示.它是用来度量定量变量间的线性相关关系.复相关系数:又叫多重相关系数v1.0 可编辑可修改复相关是指因变量与多个自变量之间的相关关系.例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关关系.偏相关系数:又叫局部相关系数:局部相关系数反映校正其它变量后某一变量与另一变量的相关关系,校正的意思可以理解为假定其它变量都取值为均数.偏相关系数的假设检验等同于偏回归系数的t检验.复相关系数的假设检验等同于回归方程的方差分析.典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性无关的

4、综合指标.再用两组之间的综合指标的直线相关系敷来研究原两组变量间相关关系可决系数是相关系数的平方.意义:可决系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高.观察点在回归直线附近越密集.相关系数(correlationcoefficient)相关系数是表示两个变量(X,Y)之间线性关系密切程度的指标,用r表示,其值在-1至+1间.如两者呈正相关,r呈正值,r=1时为完全正相关; 如两者呈负相关那么r呈负值,而r=-1时为完全负相关.完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小.当例数相等时,相关系数的绝对值越接近1,

5、相关越密切;越接近于0,相关越不密切.当r=0时,说明X和丫两个变量之间无直线关系.计算相关系数的公式为:定义与说明相关系数,或称线性相关系数、皮氏积矩相关系数(Pearsonproduct-momentcorrelationcoefficient,PPCC殍,是衡量两个随机变量之间线性相关程度的指标.它由卡尔皮尔森(KarlPearson)在1880年代提出川,现已广泛地应用于科学的各个领域.v1.0 可编辑可修改应-yn-i-l相关系数计算公式相关系数(r)的定义如右图所示,取值范围为-1,1,r0表示正相关,r0表示负相关,|r|表示了变量之间相关程度的上下.特殊地,r=1称为完全正相关

6、,r=-1称为完全负相关,r=0称为不相关.通常|r|大于时,认为两个变量有很强的线性相关性.2样本相关系数常用r表示,而总体相关系数常用p表示.在线性关系不显著时,还可以考虑采用秩相关系数(rankcorrelation),如斯皮尔曼秩相关系数(Spearmansrankcorrelationcoefficient)等.相关性质(1)对称性:X与Y的相关系数(rXY)和Y与X之间的相关系数(rYX)相等;(2)相关系数与原点和尺度无关;(3)假设X与Y统计上独立,那么它们之间的相关系数为零; 但r=0不等于说两个变量是独立的.即零相关并不一定意味着独立性;(4)相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系;(5)相关系数只是两个变量之间线性关联的一个度量,不一定有因果关系的含义.Pearson相关系数相关系数简介v1.0 可编辑可修改Pearson相关系数1用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系.如衡量国民收入和居民储蓄存款、身高和体重、高中成绩和高考成绩等变量间的线性相关关系.当两个变量都是正态连续变量,而且两者之间呈线性关系时,表现这两个变量之间相关程度用积差相关系数,主要有Pearson简单相关系数.其计算公式为:值域

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论