8李唐军试验报告单模光纤损耗测试试验要点_第1页
8李唐军试验报告单模光纤损耗测试试验要点_第2页
8李唐军试验报告单模光纤损耗测试试验要点_第3页
8李唐军试验报告单模光纤损耗测试试验要点_第4页
8李唐军试验报告单模光纤损耗测试试验要点_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验八单模光纤损耗测试实验光时域反射仪(OTDR)是一种相当复杂的仪表,它广泛地应用于实验室和 现场。它所采用的测试技术也常称为后向散射测试技术。它能测试整个光纤网络 链路的衰减并能提供和光纤长度有关的衰减细节;OTDR还可测试光纤线路中接头损耗并可定位故障点位置;OTDR这种后向散射测试具有非破坏性且只需在一 端测试的优点。一、 实验目的(1)掌握OTDR工作原理;(2)熟悉OTDR测试方法。二、实验内容(1)利用OTDR测量一盘光纤的衰减系数和光纤总长度;(2)测量两盘光纤连接处的接头损耗。三、基本原理OTDR由激光发射一束脉冲到被测光纤中。脉冲宽度可以选择,由于被测光纤链路特性及光纤本身

2、特性反射回的信号返回OTDR。信号通过一耦合器到接收机,在那里光信号被转换为电信号。最后经分析并显示在屏幕上。由于时间乘以光在光纤中的速度即得到距离,这样,OTDR可以显示返回的相对光功率对距离的关系。有了这个信息,就可得出有关链路的非常重要的特性。可以从OTDR得出的光路信息有:(1)距离:链路上特征点(如接头、弯曲)的位置,链路的长度等。(2)损耗:单个光纤接头的损耗。(3)衰减:链路中光信号的衰减。(4)反射:一事件的反射大小,如活动连接器。图1为OTDR测试的一般原理。它显示了 OTDR测试链路上可能出现的各类 事件。衰减及其测试方法:光纤衰减和波长密切相关。衰减系数随波长变化的函数

3、u(K)被称之为损耗谱。人们最感兴趣的是工作波长下的衰减系数, 如在九二1310nm、1550nm等波长下的衰 减系数。在光纤长度Z1和Z2之间,波长为九的损耗R (九)可由下式定义:P1R() =10log(dB)P2P1和P2分别表示传过光纤截面点 Z1和Z2的光功率。如果P1和P2之间的距离 为L,可用下式计算出每单位距离的损耗,即衰减系数aQ)。10P1:(1) =log(dB/ Km)Z1 -Z2P2三 log-P1(dB/Km)LP2(d接头熔接点 弯曲机械接头裂痕尾端-mmm距离(Km)图1用OTDR测试的一般原理入射到光纤的光脉冲随着在光纤中传播时被吸收和散射而被衰减。一部分散

4、 射光返回入射端。通过分析后向散射光的强度及其返回入射端的时间,可以算得 光纤损耗。假设入射光脉冲宽度为 T、功率为P(0),这束光脉冲以群速度 Vg在光 纤中传播,假设耦合进光纤中的光功率为P0考虑沿光纤轴线上任一点 Z,设该点距入射端的距离为z,那么该点的光功率为:zp(z) = P(0)exp- .0 1 f(x)dx(1 )式中,a f(x)是光纤前向衰减系数。若光在Z点被散射,那么该点的背向散射光返 回到达入射端时的光功率为: zPs(z) = s(z) p(z)exp- 0 1 b (x)dx(2 )式中,s(z)是光纤在Z点的背向散射系数,s(z)具有方向性;b(x)是光纤背向衰

5、减系数。将(1 )式代入(2 )可得:zPs(z) =P(0)s(z)exp-o (: f(x) : b(x)dx(3)考虑光纤中有2点Z1和Z2,其距入射端的距离分别为z1和z2 (z2 z1 ),这2点的背向散射光到达输入端时为Ps(zJ和PsG),则由(3)式得Ps(z1)Ps (z2)s(乙)z2=-4exP(: f(x) : b(x)dxs(z2)z1(4)对上式两边去对数得:4Ps (乙)$(乙)/ 、;(%(x)+o(b(x)dx = ln 旦詈-In(5)zPs(z2)s(z2)般认为光纤的损耗和光纤的结构参数沿轴向近似均匀,即认为前向衰减系数和背向衰减系数不随长度z而变,有

6、(z)b(z),并认为背向散射系数也不随长度而变即s(z)定s(z2),则Z1和Z2两点间损耗系数为:; f(x): b(x) =In-PyzL)(6)z2-zPs(z2)由于损耗为正向和反向之和,因此可用U =1/2af (z)+ab(z)表示Z1点到Z2点这段光纤的平均损耗系数,由(6)式有:1 汽=-In Ps(。)In Ps(z2)(7)2S -4)由上式原理可通过OTDR的测试测定一段光纤的平均损耗系数,式中的Ps(z,)、Ps(z2)的值可以从OTDR显示屏上的连续背向散射轨迹的幅度得到,进而可求出平均损耗系数 豆。与距离有关的信息是通过时间信息而得到的(此即光时域反射计中时域的由

7、来),OTDR测量发出脉冲与接收后向散射光的时间差,利用折射率n值将这一时域信息转换成距离:(8) 其中c为光在真空中的速度 (3X 1 0 8m/ s )方向耦合器:方向耦合器就是光分路耦合器。它把一束光分裂为两路光作不同方向的耦合。 光时域反射仪能在光纤的一端进行测量,就是利用了方向耦合器来实现的。这种 方向耦合器要能把光分路耦合,同时还要能消除或减少前端的菲涅耳反射。最简 单的方向耦合器如图2所示。它是由一块半反射镜(或者叫半反射片)和匹配液 盒组成。入射光(实线)一路透过半反射片注入光纤,一路经过半反射片反射, 用作入射光功率监测。背向瑞利散射光(虚线),一路透过半反射片到光源,另外

8、一路经过半反射片反射耦合到检测器。这样就把入射光和背向散射光分离开来, 光源和检测器都在光纤的同一端,测量能在同一端进行。为了减弱从光纤前端面 来的反射光和杂散光的影响,可把光纤的前端面和半反片放置在盛满匹配液的盒 里。图2半反片和匹配液盒组成的方向耦合器这种由半反片和匹配液盒组成的方向耦合器,光路调整困难,而且要用匹配液,不适于现场应用。目前较广泛使用的是整体的方向耦合器一一Y分路器,其三端通过尾纤分别与光源 A、待测光纤B和检测器C直接耦合,如图3所示。C图3熔锥型光纤耦合器这种Y型整体的耦合器比上述组合式插入损耗小, 稳定可靠,调节对准方便,还有体积小、重量轻、价格低廉等特点,所以得到广

9、泛使用。另一种整体的方向耦合器是利用晶体双折射特性设计的。如图4所示的是利用格兰一汤姆生棱镜做成的方向耦合器。图4晶体型方向耦合器如图所示,当具有两个互相垂直偏振方向的激光入射到晶体棱镜时(实线) , 由于入射光与光轴垂直,被分为 o光(遵守菲涅耳折射定理)和 e光(不遵守菲 涅耳折射定理)。在晶体胶合面,对于。光入射角巾大于临界角,因此。光发生全 反射,而e光则透过树胶层注入被测光纤。因为普通光纤不具有保偏特性,经光纤传输出来的背向散射光变成部分偏振 光。背向散射光(虚线)进入棱镜,同样分为 o光和e光,e光透过棱镜,o光被 全反射而被检测器接收。至于前端菲涅耳反射光,因为是线偏振光e光入射

10、到端面,端面反射的仍然是 e光,因此沿原路透过树胶层而不能为检测器所接收。这 样,采用晶体方向耦合器就完全消除了前端强烈的菲涅耳反射。晶体方向耦合器用于 OTDR,虽然具有很好的效果,但其缺点是加工困难, 价格昂贵。反射事件与非反射事件:图2中显示出非反射事件的例子。光纤熔接点与弯曲点会引起损耗但通常不 会引起明显反射。光纤中活接头、机械式熔接点、裂缝等将会引起损耗与反射。损耗可由后向 散射的强度值之差来决定。总的反射(通常称为回损)由叠加在后向散射之上的 反射幅度决定。图3显示的是两种反射事件的情况。尾端菲涅耳反射事件在光纤中,尾端有两种情况。(1)假如尾端为垂直切面或配了活接头(切过并已抛

11、光),那么将有4%左右的 反射光信号。通常称之为菲涅尔反射。(2)假如尾端为断裂型,那么断点的不规则性把光线散射掉, 从而不引起反射。 在这种情况下,信号将从后向反射电平掉到 OTDR噪声水平下。当然,断裂断点 也可能引起反射,但相比于规则断点要小得多。图 6显示了尾端的这两种情况。=OTDR图5反射事件与非反射事件接头 熔接点 弯曲机械接头裂痕尾端抛光端点断裂端点图6尾端反射类型动态范围:动态范围是OTDR主要性能指标之一,它决定光纤的最大可测量长度。OTDR 的动态范围定义为:始端后向散射电平与噪声之间的 dB差。动态范围越大,曲线 线型越好,可测距离也越长。动态范围目前还没有一个统一的标

12、准计算方法,常 用的动态范围计算方法主要有以下四种:(1)峰值法它是IEC (Bellcore)的标准定义,这是最保守但很有用的指标。它测到噪声的峰值。一旦后向散射电平小于噪声即认为不可见。这样动态范围实质就是始端后向散射电平与噪声峰值之间的dB差。测量条件为取OTDR最大脉冲宽度、180 秒的测量时间。(2) SNR=1 法这种动态范围是测量噪声的 RMS电平,取始端后向散射电平与 RMS噪声电 平间的dB差。这样对于同样性能的OTDR来说,用这种指标测出的动态范围比用 峰值定义IEC法所测出的动态范围高出约2.5dB。(3) N=0.1dB 定义最实用的定义方法。取可以测量损耗为0.1dB

13、事件时的最大允许衰减值。N=0.1dB定义值比信噪比SNR=1的RMS定义值小大约6.6dB,这意味着若 OTDR 有30dB的RMS动态范围,则N=0.1dB定义的动态范围只有 23.4dB,即只能在 23.4dB衰减范围内测量损耗为0.1dB的事件。(4)端探测(End detection)光纤始端的4%菲涅耳反射峰与RMS噪声电平的dB差,此值比IEC定义值 高约12dB。上述四种动态范围定义可用图 7表示。除以上四种常用的定义外,还有其它 的定义方法。需要注意的是,对同样性能 OTDR,不同的定义方法,动态范围值 不同,在检查OTDR动态范围指标时必须清楚动态范围值是以哪种定义给出。与

14、接收机的灵敏度Pn比值确定。由前面分析知,在时刻 t从均匀光纤接收到的后向散射光功率Ps由下式给出:R(t) = Po - bs exp(-: Vgt)式中P0是注入光功率,O(bs是后向散射系数,T是光脉冲宽度,口是光纤衰减系数, Vg是群速度,则动态范围为:1 P(0)% bsRT101g曾=51g笠(10)PnPnPs(0)是t=0时刻的后向散射光功率,后向散射系数与被测光纤有关,但对典型 的单模光纤,当九 =1.3um 时,0tbs=10W/s,如:P0=0.1mW, Pn=4nW, WJ代入式(10) 得R=27.5dB。从式(10)中可以看出,增大脉冲宽度、提高入射光功率 P0和接

15、收 机的灵敏度是扩大动态范围的根本途径。死区:死区决定了 OTDR所能测到的最短距离及最接近距离。死区也称为“盲点”, 它是由于活动接头的反射引起 OTDR接收机饱和所致。死区通常发生在 OTDR面 板前的活动接头反射上,但也可在光纤的其他地方发生。美国贝尔通讯研究中心 定义了两种死区。(1)衰减死区从反射点开始到接收机恢复到后向散射电平约0.5dB的范围内的这段距离。也就是OTDR能再次测试损耗和衰减的点。(2)事件死区从OTDR接收到的反射点开始,至ij OTDR恢复到最高反射点1.5dB以下这段 距离。在这以后才能发现是否还有地二个反射点,但还不能测试损耗和衰减。死区也被认为是OTDR的

16、两点的分别率。图8显示了这两种死区定义之间的 区别。图8死区的定义盲区的大小与脉冲宽度、反身系数、损耗等因素有关。脉宽越短,盲区越小,但短脉冲同时又减小了动态范围,因此要在盲区和动态范围之间折衷选择脉宽。分辨率(Resolution):OTDR有四种主要分辨率指标:取样分辨率、显示分辨率(又叫读出分辨率)、 事件分辨率和距离分辨率。取样分辨率是两取样点之间最小距离, 此指标决定了 OTDR定位事件的能力。 取样分辨率与脉宽和距离范围大小的选取有关。显示分辨率是仪器可显示的最小值。OTDR通过微处理系统将每个取样间隔 细分,使光标可在取样间隔内移动,光标移动的最短距离为水平显示分辨率、所 显示的

17、最小衰减量垂直显示分辨率。事件分辨率是指OTDR对被测链路中事件点的分辨门限,也就是事件域值(探 测阈),OTDR把小于这个阈值的事件变化当作曲线中斜率均匀变化点来处理。事 件分辨率由光电二极管的分辨阈决定,根据两接近的功率电平,指定可被测量的 最小衰减。距离分辨率指仪器所能分辨的两个相邻事件点间的最短距离,此指标类似与 事件盲区,与脉宽、折射率参数有关。用OTDR测量光纤中任意两点的距离,可表小如下:1cL=(t2-ti)(11)2 nC是真空中光速,n是光纤折射率。ti、t2是光脉冲到达被测点的时间,当 (t2 ti) =7 时,式(11)变为:1 cL =1-T(12)2 n式(12)即

18、为OTDR空间分别率表达式,由式(12)可知,OTDR动态范围 与分别率之间存在着矛盾,测量距离越长,分别率越低。精度:精度是OTDR的测量值与参考值的接近程度,包括衰减精度和距离精度。衰 减精度主要是由光电二极管的线性度决定的,目前大多数OTDR的线性度可达0.02dB/dBo距离精度依赖于折射率误差、时基误差(10-4 10-5范围内变动)以及 取样分辨率,在不考虑折射率误差时,距离精度可用下式表达:距离精度= 1m 5X10 - 5X距离土取样分辨率鬼影:在OTDR曲线上的尖峰有时并不是有真正的连接器或断点引起的菲涅耳反射峰,而是由于离入射端较近且强的反射引起的回音,这种尖峰被称为鬼影。

19、如图 7 所示,入射光脉冲在两个连接器1、2之间来回反射,使得在 OTDR曲线的G1处 产生一个尖峰(鬼影),图7中尾端强反射还可以引起鬼影 G2。有两个特征可用于识别鬼影:(1)曲线上鬼影处未引起明显损耗;(2)沿曲线鬼影与始端的距离是强反射事件与始端距离的倍数。可通过以下方法消除鬼影:在强反射处使用折射率匹配液以减小反射、选择 短脉冲宽度以减小注入功率、在强反射之前的光纤中增加衰减。如果引起鬼影的 事件位于光纤尾端,可将光纤绕在合适的工具(如铅笔)几圈以衰减反射回始端 的光而得到消除鬼影的目的。瑞利散射和菲涅耳反射信号:瑞利散射是由于光纤材料密度起伏或组分不均匀,其分子(散射粒子)的线 度

20、比光波波长小,即2皿/2时则引起漫散射,漫散射是较大的悬浮粒子(如杂质、气泡)的散 射。瑞利散射是分子弹性散射的一种,光与物质分子不发生能量交换;散射波的10频率(波长)与入射波的频率(波长)相同;散射的强度与入射光波波长的四次 方成反比,即:根据理论的分析研究,无论是多模光纤或单模光纤都可得到同样的结果,从 光纤Z点来的背向瑞利散射功率为:(13)PbSz) =;S: s c Po exp-2: z式中:z = ct/2是距光纤注入端的距离是光在光纤中的传播速度是在时间t=0时光纤注入端(z=0)的脉冲功率Pts是脉冲宽度;l p为脉宽空间弧/2是瑞利散射衰减系数;pts为总的瑞利散射功率是

21、光纤的衰减系数 是背向瑞利散射功率与总瑞利散射功率之比,称为背向放射系数。对于多模阶跃光纤:3守;对于多模渐变光纤SG1 , NA、2=-()4 n1;而对于单_3/2Ssm2模光纤而言 (w0/a) V2(。将单模光”化频率1.5 WVW 2.4 和归一化光斑尺寸W0/a=0.65 + 1.619V/2+2.879V上带入可得:NA 2NA 20.21()2 Ssm 0.24()2nini(14)比较公式,多模阶跃光纤、多模渐变光纤以及单模光纤的背向散射系数S似乎相同的。实际上,一般单模光纤的数值孔径 NA约小7dB,而且单模光纤的光耦合效率比多模光纤的几乎小 38dB0因此在同样的光源功率

22、下,单模光纤中背向散射功率比多模光纤中的小1015dB。11设光纤Z处的功率反射系数为R,则自Z点来的菲涅耳反射功率Pr为:P尸=RPexp-2a z(15)则背向瑞利散射功率和菲涅耳反射功率之比为:Pbs _ S- sC(16)光纤理想断面的反射系数 R=0.04,如果o(s=2.310-4/m, i=200ns, C=2x 108m/s 在这种条件下可以算得光纤中背向瑞利散射功率比菲涅耳反射功率低3040dB,即背向瑞利散射功率比传输功率低 4555dB。这就是说,背向瑞利散射功率很弱,再加上光路系统的耦合损耗,接收到的 散射信号就更弱,常常被背景噪声和光电转换电路、放大电路产生的噪声所淹没。 因此要把淹没在噪声中微弱信号检测出来,就需要对接收信号进行必要的处理。从前面的数值分析可知,光纤背向散射信号很微弱,比入射光功率低数十分 贝,并常常被噪声所淹没。要把携带衰减信息且被噪声所淹没的背向散射信号精 确地检测出来,普通的测量仪器是办不到的,必须对信号进行处理以改善信噪比(SNR)。在OTDR中主要用到的数字处理技术就是取样积分和数字平均技术。取样积分器:取样积分器或者叫做BOXCAR平均器,是检测微弱信号的有力工具。它要求 被检测的信号是周期信号。简单的说,就是将淹没在噪声中的周期信号通过取样 方式进行离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论