版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、对数及对数运算【学习目标】1.理解对数的概念,能够进行指数式与对数式的互化;2.了解常用对数与自然对数的意义;3能够熟练地运用对数的运算性质进行计算;4了解换底公式及其推论,能够运用换底公式及其推论进行对数的计算、化简与证明5能将一般对数转化成自然对数或常用对数、体会换底公式在解题中的作用【要点梳理】要点一、对数概念1.对数的概念如果,那么数b叫做以a为底N的对数,记作:logaN=b.其中a叫做对数的底数,N叫做真数.要点诠释:对数式logaN=b中各字母的取值范围是:a>0且a¹1, N>0, bÎR.2.对数具有下列性质:(1)0和负数没有对数,即;(2)
2、1的对数为0,即;(3)底的对数等于1,即.3两种特殊的对数通常将以10为底的对数叫做常用对数,.以e(e是一个无理数,)为底的对数叫做自然对数, .4对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a,b,N三个字母在不同的式子中名称可能发生变化.要点二、对数的运算法则已知(1) 正因数的积的对数等于同一底数各个因数的对数的和;推广:(2) 两个正数的商的对数等于被乘数的对数减去除数的对数;(3) 正数的幂的对数等于幂的底数的对数乘以幂指数;要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等
3、式左右两边的对数都存在时等式才能成立.如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:loga(M±N)=logaM±logaN,loga(M·N)=logaM·logaN,loga.要点三、对数公式1对数恒等式:2换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a1, M>0的前提下有:(1) 令 logaM=b,
4、则有ab=M, (ab)n=Mn,即, 即,即:.(2) ,令logaM=b, 则有ab=M, 则有 即, 即,即当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:.【典型例题】类型一、对数的概念例1.求下列各式中的取值范围:(1);(2);(3)【答案】(1);(2);(3)且【解析】(1)由题意,即为所求(2)由题意即(3)由题意解得且【总结升华】在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1举一反三:【变式1】函数的定义域为 【答案】类型二、指数式与对数式互化及其应用例2.将下列指
5、数式与对数式互化:(1);(2);(3);(4);(5);(6).【解析】运用对数的定义进行互化.(1);(2);(3);(4);(5);(6).【总结升华】对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1) (2) (3)lg1000=x (4)【答案】(1);(2);(3)3;(4)-4【解析】将对数式化为指数式,再利用指数幂的运算性质求出x.(1);(2);(3)10x=1000=103,于是x=3;(4)由.高清课程:对数及对数运算 例1【变式2】计算:并比较【解析】 类型三、利用对数恒等式化简求值
6、例3求值: 【答案】35 【解析】.【总结升华】对数恒等式中要注意格式:它们是同底的;指数中含有对数形式;其值为真数.举一反三:【变式1】求的值(a,b,cR+,且不等于1,N>0)【答案】【解析】将幂指数中的乘积关系转化为幂的幂,再进行运算.类型四、积、商、幂的对数高清课程:对数及对数运算例3例4. 表示下列各式 【解析】(1);(2);(3);(4)=【总结升华】利用对数恒等式、对数性质及其运算性质进行化简是化简对数式的重要途径,因此我们必须准确地把握它们在运用对数的运算性质时,一要注意真数必须大于零;二要注意积、商、幂的对数运算对应着对数的和、差、积得运算举一反三:【变式1】求值(
7、1) (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 【答案】(1)22;(2)1;(3)2【解析】(1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.类型五、换底公式的运用例5.已知,求【答案】【解析】解法一:,于是解法二:,于是解法三:,解法四:,又令,则,即【总结升华】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式(3)解决这类问题要注意隐含条件“”的灵活运用举一反三:【变式1】求值:(1);(2);(3).【答案】(1);(2);(3)【解析】(1) ;(2);(3)法一:法二:.类型六、对数运算法则的应用例6.求值(1) (2) (3)(4)【答案】(1)-10;(2)0;(3)3;(4)13【解析】(1)原式=(2) 原式=(3)原式=(4)原式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年设备维修保养标准合同(含环保标准)执行规范3篇
- 2024年防火门生产及销售代理合同
- 2024年诊所药品供应承包合同3篇
- 2024年规范员工聘任协议范本版B版
- 2024年螺杆机系列化产品批量采购合同范本3篇
- 2024年贵阳八中校园小卖部租赁经营合同
- 2024年高品质纱窗买卖协议版B版
- 2024年绘画项目承接协议
- 2024年空运合作合同书模板版B版
- 2024年黄金抵押借款合同范本(简化版)
- 耶鲁博弈论24讲全笔记
- 万科精装修标准之在万科的日子系列六
- (20)-土壤侵蚀原理-第六章混合侵蚀
- 国开大学2023年01月11026《经济学(本)》期末考试答案
- 南阳姜营机场
- 随班就读案例
- 智能制造工程训练中心建设方案
- 《电子商务概论》课件
- 污水处理设施运维方案
- 数据库期末考试复习题及答案6
- 陕西省工程竣工验收备案表
评论
0/150
提交评论