版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中公式定理必修11 .元素与集合的关系x e A => x e QrA;xe CA o x e A2 .德摩根公式C(/ (A n 8) = C(,rA UCy (A U B) = Q.A n CyA3 .包含关系(U为全集时)An8 = AoAU8 = 8oAqBoCu8qQrAoAnCu3 = C>4 .容斥原则card (A U 8) = cardA+ cardB- card (A fl B)card (A U 8 U C) = cardA+ cardB+ cardC- cardAr B) - card(By C)-card(C D A) + c” 4(4 Pl B fl
2、C)5 .集合q,a”.q的子集个数共有2”个;真子集有2"-1个;非空子集 2n-l;非空真子集有2"-2个。6 .二次函数解析式的三种形式(1)一般式/*)=以£ +x+c(a W0);(2)顶点式 f(x) = a(x -h)2 + k(a . 0);(3)零点式f(x) = a(x-xl)(x-x2)(a0).7 .指数运算性质(1 ) a'a' = a'-' (a > 0, r, s £ Q)(2 ) (a )s = cC (a > 0, r, s e Q)(3 ) (ab)' = a'
3、;h' (a>0,b > 0, r e Q)8 .对数运算性质如果”。,且工1>03>0,那么(1)10gti (M N) = log, M + lo& N(2)loga(W)= log°M_logaN、l j /V(3 ) lo& M" = n log, M (n e R)(4)换底公式lo&N = S>0,且Wl;c>0,且cWl;N>0).lo&b(5)常用推论i i it ; i it log m bn = ogn bk)&alo&c = l lo&hMo&am
4、p;cMog。= 1 °。 fn9 .函数零点的存在性定理一般地,我们有:y = /(x)在区间b上的图象是连续不断的一条 曲线,并且有/(“)/()<0,那么,函数y = /(x)在区间伍内有零点, 即存在c使得/(c) = 0,这个c也就是方程y = /(x)的根。必修21 .圆柱,圆锥,圆台表而积圆柱圆锥圆台底面面积S底=1.一S底=元户S|城“底=乃引侧面面积S侧=2公”S侧=1表面积S表=2几t (r + /)S3 = 7T r (r + /)s"九(片+片+b +2 .柱体、椎体、台体的体积柱体:体=5底6; /住="2力椎体:体=:5底&quo
5、t;;/惟=;乃/ 圆台:%台=4M。;+片+口)匕;体=§(s上底+ J s上底S卜.底+ S下底)3 .平面的基本性质(1)公理a.如果一条直线上的两点在一个平面内,那么这条直线在此平 面内。b.过不在一条直线上的三点,有且只有一个平面。c.如果两个不重合的平面有一个公共点,那么它们有且只有一 条过该点公共直线。d.平行于同一直线的两条直线互相平行。(2)三个推论经过一条直线和这条直线外的一点,有且只有一个平面。经过两条相交直线,有且只有一个平面。经过两条平行直线,有且只有一个平面。4 .等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互 补。5 .异面直线判定定理
6、连接平面内一点与平面外一点的直线,和这个平面内不经过此点 的直线是异而直线。6 .直线与平面平行的判定定理平面外一条直线与此平面内一条直线平行,则该直线与此平面平 行。7 .平面与平面平行判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平 行。8 .面面平行判定的推论如果一个平面内有两条相交直线分别平行于另一个平面内的两条 相交直线,则这两个平面平行。9 .直线与平面平行的性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的 交线与该直线平行。11 .平面与平面平行性质定理如果两个平行平面同时和第三个平面相交,那么他们的交线平 行。12 .直线与平面垂直的判定定理一条
7、直线与一个平面内的两条相交直线都垂直,则该直线与此平 面垂直。13 .平面与平面垂直的判定定理一个平面过另一个平面的垂线,则这两个直线垂直。14 .直线与平面垂直的性质定理垂直于同一个平面的两条直线平行。15 .而而垂直性质定理:两个平面垂直,则平面内垂直于交线的直线与另一个平面垂直。16 .两直线平行与垂直的判定平行:I川20yh垂直:/j ±/2 <=> 秘2 = -117 .直线方程点斜式:y-y0=k(x-xQ)斜截式:y = k.x+b截£巨式:2 + 2 = 1 a b两点式:口=口>2 - >1 %一内一般式:Ax+8y+C =。18
8、.距离公式两点间距离公式:也21 = *2-%1)'+(丁2 f了点到直线距离公式:4 = A+/+ C两平行直线间距离公式:Ax+By+C =0 Ax+By+C2=0y/A2+B219 .圆的方程(x-«)2+(x-/7)2 =r220 .点与圆的位置关系圆上 O(X-4)2 +(Xh)2 =/圆内=(工一)2 +&一)2圆外o(x-)2 +(x-Z?)2 >r21 .直线与圆位置关系相交=d<r相切=d = r相离= d>r必修31 .古典概型:(1)试验中所有可能出现的基本件只有有限个;(2)每个基本事件出现的可能性事(3)相等。我们将具有这两
9、个特点的概率模型称为古典概率模型,简称古典概 型。2 .数据的数字特征:(1)众数:一组数据中,出现次数最多的数据叫作众数;(2)中位数:将一组数据按从小到大(或从大到小)的顺序依次排 列,当数据有奇数个时,处在最中间的那个数是这组数据的中位 数;当数据有偶数个时,处在最中间的两个数的平均数是这组数 据的中位数;(3)平均数:一组数据的总和除以数据的个数所得的商就是平均数, 记作:1 = (X, + x2 + +) O(4)标准差:s& 一期+(一%, +-/。(5)方差:S2 = (x, -xf +(x, -x)2-x)2 o3 .三种抽样方式:(1)简单随机抽样的特点:总体个数N是
10、有限的;每个个体被抽到的可能性相同,都是三; N样本是从总体中逐个抽取的,即一个一个的抽取;是一种不放回抽样,即不可能先后抽取到同一个个体。(2)系统抽样的特点:适用于总体容量N较大的情况;剔除多余个体,在第1段抽样用简单随机抽样;等可能抽样,每个个体被抽到的可能性都是。(为样本容量)。 N(3)分层抽样:特点:。适用于总体由差异明显的几部分组成的情况;"利用事件先掌握的信息,更充分的反映了总体情况;。.等可能抽样,每个个体被抽到的可能性都相等。步骤:。分层求抽样比:确定抽样比攵=° N方求各层抽样数:按比例确定每层抽取个体的个数尸N,xhc.各层抽样:各层分别用简单随机抽
11、样或系统抽样抽取个体;d.组成样木:综合每层抽取的个体,组成样本。4 .几何概型:在几何概型中,事件A的概率的计算公式如下:p(A_构成事件4的区域长度(面积或僭R)年试验的全部结果所构成I勺区域长度(面积或偏只)°5 .概率的基本性质:(1)概率P(A)的取值X围:任何事件的概率在。1之间,即 O<P(A)<1;(2)概率的加法公式:如果事件A与事件8互斥,则 P(AB)=P(A)+P(B);(3)对立事件的概率公式:若事件A与事件3为对立事件,则P(A)+P(B)=1°6 .回归方程:(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线 附近,就称这
12、两个变量之间具有线性相关关系,这条直线叫作回归 直线;(2)利用回归方程对总体进行估计:利用回归直线,我们可以进行 预测。若回归方程为 y = bx+a ,则在x = x0处的估计值为。 必修41.三角恒等变换:7 1 C . a + fl a-p I ) sin tz + sin p = 2 sincos -;a 个a + P.a - B(2) sin a-sin p = 2cos-sin -;22zo xQ c a + p a-p(3 ) cos a + cos p = 2cos-cos-;229 / 37(4)cos a-cos p = -2sin(5)(6)(7)(8)(9)sin a
13、 cos 3 = sin(tz + /7)+sin(tz-/7);2cos a sin p = sin(tz + /7)-sin(cr _ /?); 2cos a cos /7 = cos (a + /7)+cos (a-/7);sin a sin = - cos (a+ /7)+cos («-/7);2c02tansin 0 =J ;«夕01 + tair (10) cos8 =(11) tan。=21-tair 2 .1 + tair 2c 02tan 21 .0 °1-tair 22 .和、差、倍、半角的三角函数:(1)和(差)角公式:® sin(
14、a±/7)= sinizcos/7±costzsinp;®cos(a±/7)= cos<zcos + sinasin p;tan(a±0=.土】Jl + tanatan/7(2)倍角公式:©sin la = 2 sin a cos/?;(2)cos2a = cos2 a-siif a = 2cos2a-l = l-2sin2(3)tan 2a =2 tail a1 - tan2 a(3)半角公式:a _ 1-cos a _ sin a 2 sin a 1 + cos a2tan sin a =-;1 2 a1 +1 an 2l-
15、tan2 cosa =- o1 + tan2 2(3) 面向量的数量积:(1 )交换律:ab = ba ;(2)结合律:(, b = .(%)= a(点);(3)分配率:= -* (4) cos。=二 L。人工0 ;I+M(5) cfb < «| |/?| ;(6)若 Z = (x,y),则有1 =f+y2,或卜/2+二2。4 .同角三角函数的基本关系:(1 ) 平方关系:sin2 ez + cos2 a = l;(2 )商的关系:tan a =";cos a(3 ) 具他形式:sin2 a = 1 - cos2 a, cos2 a = 1-sin2 a , sin
16、a = cos a tan a ,sin a cos a =otan a5 .三角函数的诱导公式:(1)公式一:当kwz时,sin(a + 2k兀)=sin a ; cos(a + 2k兀)=cose ; t an(a + 2k公=t ana 0(2)公式二:sin(4 + c) = _ sine ; cos( + a) = -cosa ; tan(/r + 2)= tana o(3)公式三:sin(-a) =-sina ; cos(-a) = cos6Z ; tan(-a) = -tana。(4)公式四:sin(乃一a) = sino ; cos(乃一a) =-cose ; tan(4一a)
17、 =-tana o(5)公式五:.(乃1/乃.sin =cosa; cos -a = sincr o(2J2)(6)公式六:.7tsin + a =cosa;12>co/£L-sinao2)11/376 .平面向量的坐标运算:(1)加减法:a±b = (xl ±x2,y, ± y2)?(2)数乘向量:, =九(和凹)=(初,彻);(3)数量积:a A cos6 = XX2+ 其>2 ;(4)模:a = 6 =4 + y:;(5)夹角:3"区=。7 .函数),= Hsin(:+8)图像的基本变换:(1)先平移后伸缩:函数y = sin
18、x的图像向左由平朔桢位 > 函数发sin(x+0)的图像横坐标变为原来的倍.纵坐标不变函数y = si n(&i +夕)的图像双坐标变为原来的八保横坐标不变 > 函数y = Asin(5+冉的图像。(2)先伸缩后平移:/ M1万i桢坐标变为原来的二倍,纵坐标不变 十 川,hk I行1函数y = sinx的图像>函数y = sin:的图像向左(右)平移用个单位%/、3曲/以-> 函数 y = sin®( + °)的 怪I 像纵坐标变为麻的八倍.横坐好像 > 函数),=A sin(加+夕)的图像。8 .向量的有关概念:(1)向量的长度或模:
19、向量而的大小,也就是向量乱的长度(或 称模),记作画。(2)零向量:长度为0的向量叫作零向量,记作6。(3)单位向量:长度等于1个单位的向量,叫作单位向量。(4)相等向量:长度相等且方向相同的向量叫作相等向量。向量1与 ;相等,记作9 = 1。(5)平行向量:方向相同或相反的非零向量叫作平行向量。向量Z与 B平行,记作Z/4。我们规定:零向量与任一向量平行,即对于任意 向量Z,都有67。(6)共线向量:任一组平行向量都可以移动到同一直线上,因此, 平行向量也叫作共线向量。9 .弧长公式、扇形的面积公式:/ =卜归=-lr = -ar2 0其中/为弧长,r为圆的半径,为圆心 角的弧度数。必修5L
20、数列的通项公式与前n项和的关系:an - (数列”的前n项和为s =q+a,+ a ) 2 .等差数列的通项公式:其前 n 项和公式为: , ="1 +.乙乙乙乙3 .等比数列的通项公式:勺=M = %W ( e N )(夕工0);q其前n项和公式为:与=.或4=艺研I /M)</=1I4 .若加、小、*M且吐 = + ?那么,当数列为是等差数列时,有 am + an = ap + %;当数列 % 是等比数列时,有am - an =ap- aq.5 .等差数列 a” )中,若s“ =lQs3n =30,$3“ =60.6 .等比数列,中,若s” = 1Q s2 =30,则% =
21、70;7 .正弦定理及正弦定理与外接圆半径的关系:a b c 。R.an A snB sinC /人,a = 27?sin A,b = 27?sin B,c = 27?sin C ;sin A = -yjj- y sin B =, sin C =; :Z?: c = sin A: sin B: sin C;sin A + sin 8 +sin C= 2R;正弦定理与面积公式:,c = MsinC = WcsinA = Wcsin8,8 .余弦定理:37,cr = Zr + L 2ccosA, 厅=cr + c - 2accosBy c- =cr +/?" -2ahcosC.h2 +c
22、2-a2 cosA =2b ca2 +c2-b2 cosB =2aca2 +b2 -c2 cosC =lab选修111 .四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2 .若p = q,则p是q的充分条件,q是p的必要条件.若=小 则p是的充要条件(充分必要条件).3 .逻辑联结词:且(/):命题形式八g;或(or):命题形式pvg;(3)非(not):命题形式Pqp八qprq真真真真假真假假真假假真假真真假假假假真4 ,椭圆的几何性质:焦点的位置焦点在X轴上焦点在y轴上图形“小甲'标准方程22%
23、+ 今= l">b>。)X围-a<x<a-b<y<b-b < x < b< y < a顶点A1(T7,0)、A?(4,0)B"0,")、B2(0,b)A (0,-67)、A2 (0,a)B|(4,0)、B2(/?,0)轴长短轴的长=»长轴的长=2隹占 八、,、6(-c,0)、5(c,0)6(0,-c)、6(0,c)焦距内周=242=/-/)对称性关于x轴、y轴、原点对称离心率o<evl)X 1考|x W 或 x 2。,yeRy -a y a x e R顶点A1(T7,0)、A?(4,0)A
24、1(0,-4)、A? (0,a)轴长虚轴的长=3实轴的长=2隹占 八、,、4(-c,0)、6(c,0)4(0,-c)、E(0,c)焦距归用=2d/=/+)对称性关于x轴、y轴对称,关于原点中心对称离心率e=rFI(e1)渐近线方程b y = ±xa,a y = ±x ' b5 .抛物线的几何性质:标准方 程y2 = 2 px(。)y2 = 2 px(。)x2 = 2 py (。)X2 = 2 py(p。)图形林聿顶点(0.0)对称轴X轴y轴隹点噌,。)尸(当。/心号)F(。T)准线方程x = E2丫一A2y = 2y=f离心率e = 1X围x>0x<0y
25、>0y<06 .过抛物线的焦点作垂直于对称轴且交抛物线于A、B两点的线段 AB,称为抛物线的“通径”,即|AB| = 2p.7 .焦半径公式:若点P(xo,y0)在抛物线产=2川(>0)上,焦点为八则|PF卜与+勺 若点PC%,%)在抛物线W =2py(p>0)上,焦点为f,则|PF| = y()+,;8 .函数从内到x,的平均变化率:/区二/9 .导数:在点/处的导数记作必=/化)=啊/6).10 .函数y = x)在点两处的导数的几何意义是曲线)' = /(')在点 P(x°,/(%)处的切线的斜率.11 .常见函数的导数公式:C =0;(
26、V)=亡-';(sinx) =cosx;(cosx) = -sinx ;S)'=a、lna;(/)'=" ;©(logax), = i;(lnx) =,xnax12 .导数运算法则:(i)/(x)±g(x)'=r(x)±g'3.9(2)卜3送(切=/'(x)g(x) + /(x)/(x).9制二小端产惭。)13 .在某个区间(力)内,若r(x)>0,则函数y = x)在这个区间内单调递增;若广(工)<0,则函数y = /(x)在这个区间内单调递减.必修1-21线性回归方程:(最小二乘法)其中,b
27、 = a£耳 一Xa=y-bx注意:线性回归直线经过定点丘脑X(a; -x)(v. -y)2 .相关系数(判定两个变量线性相关性):.厂勺1. . 、这(七斤之(工-寸注:r>0时,变量正相关;r <0时,变量负相关;I川越接近于1,两个变量的线性相关性越强;接近于0时,两个变量之间几乎不存在线性相关关系。3 .条件概率对于任何两个事件A和B,在己知B发生的条件下,A发生的概 率称为B发生时A发生的条件概率.记为。(川5),其公式为P(AB) = P (AB) P (A) 4相互独立事件(1)一般地,对于两个事件A, B,如果_P(A3)=P(A)0(5),则称 A、3相
28、互独立.(2)如果A,A?,,相互独立,则有PHA4)= _P(Al)P(A2).P(An).(3)如果A, 5相互独立,则A与有,不与8,不与耳也相互独立.39 / 375.独立性检验(分类变量关系):(1)2x2列联表设A,8为两个变量,每一个变量X为总计aba + b力工cde+d总计a+cb+dn=a+b+c+d都可以取两个值,变量A:4,4=不变量3:练屈=瓦;通过观察得到右表所示数据: 并将形如此表的表格称为2x2列联 表.(2)独立性检验根据2x2列联表中的数据判断 两个变量A, B是否独立的问题叫 2x2列联表的独立性检验.(3)统计量僻的计算公式/的范围独立性判断%Y2.70
29、6没有关联Z2> 2.70690%的把握判定变最4、B有关联Z2>3.84195%的把握判定变曼4、B有关联Z2> 6.63599%的把握判定变置4、6有关联_n (adbe) 2以=(a+b) (c+d) (a+c) (b+d)6.复数相关结论.(1) z=c/4-Z?/ £Rob=0 (a,b GR)Oz=Z <=>z20;(2) z=a+bi 是虚数 o厚O(a,b £R); z=+bi 是纯虚数0go 且厚0(a,GR)oz+z=0 (zO) oz2<0;(4) a+b=c+dioa=c 且 c=d(a,b,c,d GR);7 .
30、复数的代数形式及其运算设 Zi= " + bi, Z2 = c + di (a,b,c,d £R),则: Zi七:2 = (a + b)± (c + t/)i;(2) z 9 Z2 = (a+biy(c+di)= (ac-bd) 4- (a(J+bc)i;(3) z% = * *)(<;)=勺当+竺苧 知); (c + di)(c-ch) +d- l +小8 .几个重要的结论(1) (1±02=±2/;1±U旦T;1-/ 1 + Z(2) i性质:T=4;严=1,严+i在,产+2 = t产+3 = t ;产+尸川+产2 +产+3
31、 =o: _ 1(3) |z| = 1 <=> zz = 1 <=> f = oz9 .运算律:(1) ?""=4";(2)(二)" =zm;(3)(z.Z2)m=zrV(m,wM;选修2-11 .如果闭区间上上函数fW的图像是连续曲线,且满足fqf(b)Y 0 , 那么/(X)在开区间(4,)内至少存在一个零点。2 .如果一条直线垂直于一个平面内两天相交直线,那么这条直线垂直 于这个平面。3 .如果两个平面平行,那么一个平面内的任何一条直线平行于另一个 平面。4 .若向量7,5满足t八=0,则“ _L h.5 结合律(a+)+c
32、 = c+3+); 交换律:a + b = b + a;6 .设今为实数,那么(1)%=«2(2 e /?);(2)A(a+b) = Aa + Ab, (2 + ju)a = Aa +e a e R);(3)(加)a = 2(/Z6/)(2 eRjicR).7 .空间两个向量8 .空间向量的数量积与平面向量的数量积具有同样的运算律:交换律人= ;(2)分配律小S + c) = a + ac;(3)A(a-b) = (Aa)-b(A e R).同=J-4;(2)a_LZ? = a = 0;(3)cos(tt,0 =i II I a*°淮工。)ar9 n与的数量积:=同小0$6
33、(砂Jc/jb的夹角).10 .平面向量的坐标运算:(1)设 a =(演,)力=(x2,为),则。+ b = (xt+x2, y + y2);(2)设a =(项,凹)力=(x2, %),则a6 =(国一期,乃 一 %);(3)设 A = (k , y), 8 =(七,月),则 A B = OB-OA = (x2-%,内 一 力);(4»殳 =(x, y),% t R,则加=(疝,不)(5 )1 殳。=(再,乃),=(占,%),则4=区占+ )%);11 .点到直线的距离:d = '|pd一|PAsJ.点到平面的距离:d = |PA端.选修2-21 .推理与证明(1)合情推理与
34、类比推理:根据一类事物的部分对象具有某种性质,退出这类事物的所有 对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理;根据两类不同事物之间具有某些类似(或一致)性,推测其中 一类事物具有与另外一类 事物类似的性质的推理,叫做类比推理。(2)类比推理的一般步骤:找出两类事物的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的 命题(猜想);一般的,事物之间的各个性质并不是孤立存在的,而是相互制 约的.如果两个事物在某些性质上相同或相似,那么他们在另一写 性质上也可能相同或类似,类比的结论可是真的;一般情况下,如果类比的相似性越多,相似的性质与推测
35、的性 质之间越相关,那么类比得出的命题越可靠。(3)演绎推理(俗称三段论):由一般性的命题推出特殊命题的过程, 这种推理称为演绎推理。(4)数学归纳法:它是一个递推的数学论证方法;步骤:4.命题在 =1(或“0)时成立,这是递推的基础;方.假设在 =k时命题成立;c.证明n = k + 时命题也成立;完成这三步,就可以断定对任何自然数(或心且 eN)结论 都成立。(5)反证法:反证法的证题模式可以简要的概括为“否定一推理一否 定:即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”; 应用反证法证明的主要三步是:否定结论一 推导出矛盾一结论
36、成立。(6)分析法:所谓分析法,是指“执果索因”的思维方法,即从结论出发,不断地去寻找需知,直至达到已知事实为止的方法;分析法的思维全貌可概括为:结论一 需知1需知2 己知。(7)综合法:所谓综合法,是指“由因导果”的思维方法,即从己知条件出 发,不断地展开思考,去探索结论的方法;综合法的思维过程的全貌可概括为:已知一可知1可知2结论。2 .导数及其运算(1)导数的物理意义:瞬时速率。一般的,函数),= /(x)在x = 处的瞬时变化率是linJ(%),我们称它为函数),= /(»在片两处D Ax的导数,记作广或必,即()加。上 tdAr(2)导数的几何意义:曲线的切线。通过图像,我
37、们可以看出当点匕趋近于时,直线"与曲线相切。容易知道,割线Pg的斜率是A. _/k)-/U),当点匕趋近于尸时,函数y = /(x)在x = x0处的导数就是 与 一所切线尸7的斜率k,即1"0)一小)-小)。(3)导函数:当X变化时,/心)便是R的一个函数,我们称它为了的导函数。y = /(X)的导函数有时也记作y,即/«)= Iimo,y(4)基本初等函数的导数公式:若x) = c (c为常数),则小)=0;若=贝|尸3=2.尸;若 /(x) = sinx ,则 f'(x) = cosx ;若/(x) = cosx ,则尸(x) = -sinx;若 /
38、(X)= 2 ',则 /1(X)= ax In a ;若 / (x) = / ,则/(X)= ex ;若 /W= log;,则/(x) = 1;Aina若/(x)=lnx,则 /'(x)=l o X(5)导数的运算法则:/(x)±g(x) =/'(x)±g'(x);/(" g(x) = /'(» g(x)+ f (x) gx);_ /'(x)g W"。) _(6)复合函数求导:,,= /)和 = g(x),称则y可以表示成为x的函数,即,=为(刈为一个复合函数,p")出3 =加(刈官(6
39、。3 .导数在研究函数中的应用(1)函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(ab)内如果广 。,那么函数y = /(X)在这个区间单调递增;如果/1(x)0,那么函数,,= x)在这个区间单调递减。(2)函数的极值与导数:极值反映的是函数在某一点附近的大小情况。求函数),=/(A-)的极值的方法是:如果在与附近的左侧广(x)>0 ,右侧r(x)<0,那么/(%)是极大 值;如果在与附近的左侧广(x)vO,右侧/(x)>0,那么/(%)是极小 值。(3)函数的最大(小)值与导数:求函数y = /(x)在上的最大值与最小值的步骤:求函数y =
40、 /(x)在(。淮)内的极值;将函数的各极值与端点处的函数值/(),/()比较,其 中最大的是一个最大值,最小的是最小值。4 .数系的扩充和复数的概念(1)复数:形如,+山(awRbwR)的数叫做复数,。和分另II叫它的实部和虚部;(2)分类:复数a + bi (awR,bwR)中,当b = 0,就是实数;。工0,叫做虚数;当4 = 02工0时,叫做纯虚数。(3)复数相等:如果两个复数实部相等且虚部相等就说这两个复 数相等。(4)共胡复数:当两个复数实部相等,虚部互为相反数时,这两 个复数互为共枕复数。(5)复平面:建立直角坐标系来表示复数的平面叫做复平面,A- 轴叫做实轴,轴除去原点的部分叫
41、做虚轴。(6)两个实数可以比较大小,但两个复数如果不全是实数就不能 比较大小。5 .复数的运算:设Zi=a + i, Z2=c + di (a,b,c,deR)(1) 4 ±Z2 =(”土c)+3±) ;(2) Zi Z? = ac-bd)+(ad - be);(3)立=-!( (Z-0)。Z2L+"-6 .几个重要的结论:(1)卜| + Z2+|Z1-Z2|2 = 2怎 |2+ z212);(2) z z =卜= z ;(3)若z为虚数,则0207、乘法运算律:(1)z"'z"=zE;(2) (/)'=泮;(3) Gz2)
42、39;=a”z2" (,“eR)。8、关于虚数单位i的一些固定结论:(1) r =-1; (2) /3 = -i ; (3) Z4=l; (4)产+产+严2+严3=。° 选修231 .计数原理:(1)分类加法计数原理:做一件事情,完成它有N类办法,在第 一类办法中有M种不同的方法,在第二类办法中有M,种不同的方 法,在第N类办法中有种不同的方法,那么完成这件事 情共有M + M 2 + 种不同的方法。(2)分步乘法计数原理:做一件事情,完成它有N类办法,在第 一类办法中有M种 不同的方法,在第二类办法中有种不同的方 法,在第N类办法中有种不同的方法,那么完成这件事 情共有叫
43、叫种不同的方法。(4)排列:从个不同的元素中任取用(E)个元素,按照一 定顺序排成一列,叫做从个不同元素中取出团个元素的一个排 列。(5)排列数:A'" = 一 1)(一? +1) = 7( m < ,?, e N )。 (n-nif.(6)组合:从个不同的元素中任取用(区)个元素并成一组, 叫做从个不同 元素中取出m个元素的一个组合。(7)组合数:己"_ 然 _ (一。(-"? +1)_川 ."A;ml加(一 ?)! c;=G7";cm。(8)二项式定理:(a+” = C;“ + Can-'b+Can-2b2 + +Cr
44、n(TrW + C”。(9)二项式通项公式:(' = 0,)。2 .随机变量及其分布(1)随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X是 随着试验的结果的不同而变化,那么这样的变量叫做随机变量。随机变量常用大写字母X、Y等或希腊字母八"等 表示。(2)离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机 变量叫做离散型随机变量。(3)离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为X,X,X,X”,X取每一个值X, ( / = 1,2,)的概率尸= (J = Xj=£,
45、则称表为离散型随机变量 X的概率分布,简称分布列。XXIX2 Xi XnPP】P2 Pi Pn(4)分布列性质:”之0, 1 = 12;6+鼻+嗯=1。(5)二点分布:如果随机变量X的分布列为:X 10-p p q其中O<P<1, q = -p,则称离散型随机变量X服从参数产的二点分布。(6)超几何分布:一般地,设总数为N件的两类物品,其中一类 有M件,从所有物品中任取(WN)件,这件中所含这类物品件数X是一个离散型随机变量,则它取值为时的概率为P(X=k)=C; (攵=o/2,?),其中? = minM, 且M WN , n、M,N eN(7)条件概率:对任意事件A和事件8,在己
46、知事件A发生的条件下事件8发生的 概率,叫做条件概率.记作耳回封,读作A发生的 条件下8的概率。(8)条件概率公式:尸(8H)=号署,P(A)Oo(9)相互独立事件:事件A (或B)是否发生对事件8 (或A)发生 的概率没有影响,这样的两个事件叫做相互独立事件。 P(AB)= P(A)P 。(10) 次独立重复事件:在同等条件下进行的,各次之间相互 独立的一种试验。(H)二项分布:设在次独立重复试验中某个事件A发生的次数, A发生次数4是一个随机变量。如果在一次试验中某事件发生的概 率是P,事件A不发生的概率为 夕=1-,那么在次独立重复试验 中 PG=k) = C:p%,i,(其中攵=。,1
47、,,7 = 1 -/? )o于是可得随机变量g的概率分布如下:01 k nPd产 这样的随机变量看服从二项分布,记作凤,),其中,为参 数。(12)数学期望:一般地,若离散型随机变量g的概率分布为gX2 XipPiP2 Pi则称党7出+.+为g的数学期望或平均数、均值, 数学期望又简称为期望,是离散型随机变量。(13)方差:。"(可-四卜四+卜-/厂/2+国-第>/乙叫随机变量4的均方差,简称方差。(14)集中分布的期望与方差一览:期望方差两点分布EJ = pD& = pq,q = - p二项分布4 8(,p)E& = npDg = qEg = qnp,q =
48、1_ p(15)正态分布:若概率密度曲线就是或近似地是函数,xeR的图像,其中解析式中的实数、b(<7>0)是参数,分别表示 总体的平均数与标 准差。则其分布叫正态分布记作:N(0), /(X) 的图象称为正态曲线。(16)基本性质:曲线在X轴的上方,与X轴不相交;曲线关于直线X = 对称,且在X=时位于最后J点;当x< 时,曲线上升;当x> 时,曲线下降,并且当曲线向左、右两边无限延伸时,以R轴为渐近线,向它无限靠近。当一定时,曲线的形状由b确定。b越大,曲线越“矮胖”, 表示总体的分布越分散;b越小,曲线越“瘦高”,表示总体的 分布越集中。当。相同时,正态分布曲线的
49、位置由期望值来决定。正态曲线下的总面积等于lo(17) 3b 原则:从上表看到,正态总体在(-2b,+2b)以外取值的概率只有4. 6%, 在(-3b, + 3b)以外取值的概率只有0.3%,由于这些概率很小,通 常称这些情况发生为小概率事件。也就是说,通常认为这些情况在 一次试验中几乎是不可能发生的。3.统计案例(1)独立性检验:假设有两个分类变量x和丫,它们的值域分别为(不马)和(%刈), 其样本频数列联表为:V1y2总计巧aba + bCdc + d总计a+cb + da+b+c+d可以利用独立性检验来考察两个变量X和Y是否有关系,并且能较精确地给出这种判断的可靠程度。具体的做法是,由表
50、中的数据算出随机变量Y的值:K2n(ad-bc)(6/ + bc + da + cb + d),其中 = a + b + c + d为样本容量,K?的值越大,说明“X和Y有关系”成立的可能性越大。片3.841时,X和y无关;片3.841时,X和丫有95%可能性有关;片6.635时,X和 y有99%可能性有关°(2)回归分析:回归直线方程亍=4+加,其中人一=三二,"亍-加。ZQJ -nx 1-1/-I选修4“几何证明选讲1 .平行线分线段成比例定理:三条平行线截两条直线,截得的对应线 段成比例.2 .推论:平行于三角形一边的直线截其他两边(或两边的延长线), 截得的对应线段
51、成比例.3 .三角形内角平分线定理:三角形的内角平分线分对边所得的两条线 段与这个角的两边对应线段成比例.4 .直角三角形的射影定理:直角三角形的每一条直角边是它在斜边上 的射影与斜边的比例中项,斜边上的高是两条直角边在斜边上射影的 比例中项.5 .圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,圆 周角的角度等于它所对的弧的度数的一半.6 .推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的 圆周角所对的弧也相等.7 .推论2:半圆(或直径)所对的圆周角是直角;90。的圆周角所对的 弧是半圆.8 .切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的 切线.9 .切线的
52、性质定理:圆的切线垂直于经过切点的半径.10 .推论1:经过圆心且垂直于切线的直线经过切点.11 .推论2:经过切点且垂直于切线的直线经过圆心.12 .切线长定理:过圆外一点作圆的两条切线,这两条切线长相等.13 .弦切角定理:弦切角等于它所夹弧所对的圆心角;弦切角的度数 等于它所夹弧的度数的一半.14 .切割线定理:过圆外一点作圆的一条切线和一条割线,切线长是 割线上从这点到两个交点的线段长的比例中项.6推论:过圆外一点作圆的两条割线,在一条割线上从这点到两个 交点的线段长的积,等于另一条割线上对应线段长的积.16 .相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积 相等.17 .圆
53、内接四边形的性质定理:圆内接四边形的对角互补.18 .推论:圆内接四边形的任何一个外角都等于它的内对角.19 .定理:如果一个四边形的内对角互补,那么这个四边形四个顶角 共圆.20 .推论:如果一个四边形的一个外角等于其内对角,那么这个四边 形的四个顶点共圆.21 .*托勒密定理:圆的内接四边形两对边乘积之和等于两条对角线的 乘积.选修4-4坐标系与参数方程1 .点的极坐标(q,8)化为直角坐标(X,),)的关系式x = pcosO<y = psin 02 .点的直角坐标(、,),)化为极坐标(夕的关系式' , , ) p-=厂+厂tan = (a 0) v3 .点的直角坐标“»z)与柱坐标aaz)的关系式X = rcosO 0<
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幻灯片照相产品供应链分析
- β受体阻断药产品供应链分析
- 维生素泡腾片市场分析及投资价值研究报告
- 为残障人士提供服务行业市场调研分析报告
- 保险经纪服务行业市场调研分析报告
- 自行车脚踏车车轮项目运营指导方案
- 农业碳汇经济行业市场调研分析报告
- 云航空服务行业经营分析报告
- 团队协作培训-企业培训与咨询师
- 乐器背带产业链招商引资的调研报告
- 乳腺疏通课件
- 网络钓鱼攻击如何分辨与防范
- 大数据技术在生态环境保护中的应用
- 待岗学习心得体会
- Excel常用办公技巧
- 新任村干部 财务培训课件
- 中国钱币的演变历史
- 2024年盘锦北方沥青股份有限公司招聘笔试参考题库含答案解析
- 腹部手术后的康复护理指导
- 中国动态血糖监测临床应用指南
- 小区挡土墙监测方案
评论
0/150
提交评论