版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题八 带电粒子在复合场中的运动【考纲解读】1.能分析计算带电粒子在复合场中的运动2能够解决速度选择器、 磁流体发电机、质谱仪等磁场的实际应用问题题组扣点深度思考拙題警点深入理解擁裁規律基础知识题组带电粒子在复合场中的直线运动 某空间存在水平方向的匀强电场 (图中 未画出),带电小球沿如图1所示的直线斜向下由 A点沿直线向B点运动, 此空间同时存在由 A指向B的匀强磁场,则下列说法正确的是( )A.小球一定带正电B 小球可能做匀速直线运动C .带电小球一定做匀加速直线运动D .运动过程中,小球的机械能增大答案 CD解析 由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相 同
2、,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电D正确.2小球的电性,选项 A错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所 以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直 线运动,选项 C正确;运动过程中由于电场力做正功,故机械能增大,选项图2. 带电粒子在复合场中的匀速圆周运动如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面 向里,则下列说法正确的是 A .小球一定带正电 B .小球一定带负电 C 小球的绕行方向为顺时针 D .改变小球的速度大小,小球将不做圆周运动 答案 B
3、C 解析 小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场 方向可知小球一定带负电,A错误,B正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C正确,D错误.【考点梳理】一、复合场1 .复合场的分类(1) 叠加场:电场、磁场、重力场共存,或其中某两场共存.(2) 组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁 场交替出现.2.三种场的比较项目名称、力的特点功和能的特点重力场大小:G= mg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:F = qE方向:a.正电何受力方向与场强方向相
4、冋b.负电何受力方向与场强方向相反电场力做功与路径无关W= qU电场力做功改变电势能磁场洛伦兹力F = qvB 方向可用左手疋则判断洛伦兹力不做功,不改变带电粒子 的动能二、带电粒子在复合场中的运动形式1 .静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2. 匀速圆周运动当带电粒子所受的重力与电场力大小相等 方向相反时,带电粒子在洛伦兹力的作用下, 在垂直于匀强磁场的平面内做匀速圆周运动.3. 较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做 非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.
5、分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.规律方法题组3. 质谱仪原理的理解如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的 匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片 A1A2.平板S下方有磁感应强度为 B0的匀强磁场.下列表述正确的是()A.质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P的带电粒子的速率等于E/BD .粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小答案 ABC解
6、析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B正确;由Eq = Bqv可知,v = E/B,选项C正确;粒子打在胶片上的位置到 狭缝的距离即为其做匀速圆周运动的直径 D = ,可见D越小,则粒子的比荷越大,BqD不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A正确,D错误.4. 回旋加速器原理的理解劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示置于高真空中的 D形金属盒半径为 R,两 盒间的狭缝很小,带电粒子穿过的时间可忽略磁感应强度为B的匀强磁场与盒面垂直,高频
7、交流电频率为f,加速电压为U 若A处粒子源产生的质子质量为 m、电荷量为+ q,在加速器中被加速, 且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的A .质子被加速后的最大速度不可能超过2 nRfB .质子离开回旋加速器时的最大动能与加速电压U成正比C .质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为,2 : 1答案 AC解析粒子被加速后的最大速度受到确;粒子离开回旋加速器的最大动能D .不改变磁感应强度 B和交流电频率f,该回旋加速器的最大动能不变D形盒半径R的制约,因v = 罕=2 nRf,故A正1 2 1 2 2 2 2 2 2 , Ekm = mv = mX 4 nR
8、f = 2m nRf,与加速电压mv1212U无关,B错误;根据R= Bq, Uq = ?mv1 , 2Uq = ?mv2,得质子第2次和第1次经 过两D形盒间狭缝后轨道半径之比为 2 : 1, C正确;因回旋加速器的最大动能 Ekm = 2m T?R2f 2与m、R、f均有关,D错误.【规律总结】带电粒子在复合场中运动的应用实例1 .质谱仪(1) 构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图51 2原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU = mv2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式 qvB2v=mr'
9、由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.1;2mUqr2B2q2Ur = _ 气,m ,二= rB. q2UmB r.2.回旋加速器构造:如图6所示,Di、D2是半圆形金属盒,D形盒的缝隙处接交流电源,D形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一次一2 次地反向,粒子就会被一次一次地加速.由qvB = mv ,得 r2口2 2Ekm = qo r,可见粒子获得的最大动能由磁感应强度B和D形盒2m半径r决定,与加速电压无关.特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中
10、偏转的原理.图6(匀速圆周运动)3 .速度选择器(如图7 所示)(1)平行板中电场强度 E和磁感应强度B互相 垂直这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE= qvB,V= B.4.磁流体发电机(1) 磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2) 根据左手定则,如图 8中的B是发电机正极.(3) 磁流体发电机两极板间的距离为 L,等离子体速度为 v,磁场的 磁感应强度为 B,则由qE= qU = qvB得两极板间能达到的最大电势差 U = BLv.5.电磁流量计工作原理:如图 9所示,圆形导管直径为 d,用
11、非磁性材 料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定,即:qvB= qE = q,所以v=蕾,因此液体流量 Q= Sv=nd2 U nu4 Bd_ 4B .课堂探究-考点突破XXX严XXXXXXXXXX ,XXXX,Xr 1XKX1+ 十 + 十 +图7免做听曲同AC究规捧方法考点一 带电粒子在叠加场中的运动1 .带电粒子在叠加场中无约束情况下的运动情况分类(1) 磁场力、重力并存 若重力和洛伦兹力平衡,则带电体做匀速直线运动. 若重力和洛伦兹力
12、不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2) 电场力、磁场力并存(不计重力的微观粒子) 若电场力和洛伦兹力平衡,则带电体做匀速直线运动. 若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可 用动能定理求解问题.(3) 电场力、磁场力、重力并存 若三力平衡,一定做匀速直线运动. 若重力与电场力平衡,一定做匀速圆周运动. 若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用 能量守恒或动能定理求解问题.2 .带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运
13、动形式有直线 运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力 不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.【例1 如图10所示,带电平行金属板相距为2R,在两板间有垂直纸面向里、磁感应强度为B的圆形匀强磁场区域 ,与两板及左侧边缘线相切一个带正电的粒子(不计重力)沿两板间中心线 O1O2从左侧边缘Oi点以某一速度射入,恰沿直线通过圆形磁场区域,并从 极板边缘飞出,在极板间运动时间为to.若撤去磁场,质子仍从 Oi点以相同速度射入,则经殳时间打到极板上.(1) 求两极板间电压 U ;若两极板不带电,保持磁场不变,该粒子仍沿中心线OiO2从Oi点
14、射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析(1)设粒子从左侧 Oi点射入的速度为Vo,极板长为L,粒子在初速度方向上做匀速直线运动L : (L - 2R)= to :解得 L = 4R粒子在电场中做类平抛运动:L - 2R= Vo 在复合场中做匀速运动:qR= qvoB2联立各式解得Vo= 4R, U = 8R Btoto(2) 设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r,粒子恰好从上极板a,由几何关系可知:3= n a= 45° r + Q2r = R左边缘飞出时速度的偏转角为1qE to 2 因为R=蛊, 所以坐=应=8Rm m to根据牛顿第二
15、定律有解得v=亠Rto2 V qvB= m:,2cJ2 1 Rto所以,粒子在两板左侧间飞出的条件为0<v< 答案攀0<v<2Rtoto技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1. 弄清叠加场的组成.2. 进行受力分析.3. 确定带电粒子的运动状态,注意运动情况和受力情况的结合.4. 画出粒子运动轨迹,灵活选择不同的运动规律.(1) 当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2) 当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.(3) 当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4) 对于临界问
16、题,注意挖掘隐含条件.5. 记住三点:(1)受力分析是基础;(2 )运动过程分析是关键;(3) 根据不同的运动过程及物理模型,选择合适的定理列方程求解.1J0I1:71ar图11【突破训练1】如图11所示,空间存在着垂直纸面向外的水平匀强磁场, 磁感应强度为 B,在y轴两侧分别有方向相反的匀强电场,电场强 度均为E,在两个电场的交界处左侧,有一带正电的液滴a在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴 b,当它的运动方向变为水平方向时恰与a相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x轴正方向做匀速直线运动,已知液滴b与a的质量相等,b所带电荷量是a所带电荷量的2倍
17、,且相撞前a、b间的静电力忽略不计.(1) 求两液滴相撞后共同运动的速度大小;(2) 求液滴b开始下落时距液滴a的高度h.答案解析液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用.(1) 设液滴a质量为m、电荷量为q,则液滴b质量为m、电荷量为一2q, 液滴a平衡时有qE= mga、b相撞合为一体时,质量为 2m,电荷量为q,速度为v,由题意知处于平衡状态, 重力为2mg,方向竖直向下,电场力为qE,方向竖直向上,洛伦兹力方向也竖直向上,因此满足qvB + qE= 2mg由、两式,可得相撞后速度 v=E(2) 对b,从开始运动至与a相撞之前,由动能定理有1 2We+ Wg=圧
18、k,即(2qE+ mg)h= mvoa、b碰撞后速度减半,即 v=号,则vo= 2v = 2E2 2 2 mvo vo 2E 再代入式得h= = 3gB4qE+ 2mg 6g 3gB考点二 带电粒子在组合场中的运动1 .近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2 .解题时要弄清楚场的性质、场的方向、强弱、范围等.3. 要进行正确的受力分析,确定带电粒子的运动状态.4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.【例2】(2012山东理综23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向
19、里,在边界上固定两长为L的平行金属极板 MN和PQ,两极板中心各有一小孔 3、£,两极板间电压的变化规律如图乙所示,正反向电压的大小均粒子在电场力的作用下向右运动,在t= 时刻通过S2垂直于边界进入右侧磁场区.计粒子重力,不考虑极板外的电场XXXXXXX X :x I x IX XXX !XX :X X乙为U。,周期为.在t = 0时刻将一个质量为 m、电荷量为一q(q>0)的粒子由S静止释放,图12(1) 求粒子到达 住时的速度大小v和极板间距d.(2) 为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3) 若已保证了粒子未与极板相撞,为使粒子在t = 3To时刻再次
20、到达 ,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.审题指导 1粒子的运动过程是什么?2 .要在t= 3To时使粒子再次到达 S2,且速度为零,需要满足什么条件?解析 (1)粒子由Si至S2的过程,根据动能定理得1 2qUo= 2mv由式得v= “设粒子的加速度大小为 a,由牛顿第二定律得 qU = ma由运动学公式得d=苏(罗)2联立式得d= T0 :'2业4* m(2)设磁感应强度的大小为 B,粒子在磁场中做匀速圆周运动的半径为2律得qvB= mRR,由牛顿第二定要使粒子在磁场中运动时不与极板相撞,需满足2R>2联立式得B<f: 2nqU0(3)
21、设粒子在两边界之间无场区向左匀速运动的过程所用时间为ti,有d= vti 联立式得ti=4若粒子再次到达S2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t2,根据运动学公式得 d = $2联立式得t2=设粒子在磁场中运动的时间为tTo丄丄 t = 3To 2 一 ti 一 t2 联立?式得t=今4设粒子在匀强磁场中做匀速圆周运动的周期为T,由式结合运动学公式得2 nm="qB4b<l2mU0由题意可知T = t联立? 式得B=笄.7qTo答案警”呼7T o 8 nm 4 7qT0方法点拨解决带电粒子在组合场中运动问题的思路方法【突破训练2 如图13所示装置
22、中,区域I和川中分别有竖直向 上和水平向右的匀强电场,电场强度分别为 E和E;区域n内有垂直向外的水平匀强磁场,磁感应强度为B. 质量为图13m、带电荷量为q的带负电粒子(不计重力)从左边界0点正 上方的M点以速度vo水平射入电场,经水平分界线 0P上 的A点与0P成60°角射入区域n的磁场,并垂直竖直边界CD进入川区域的匀强电场中.求:粒子在区域n匀强磁场中运动的轨迹半径;0、M间的距离;(3) 粒子从M点出发到第二次通过 CD边界所经历的时间. 答案(1)2mvo (2) 3mv°28+ . 3 mvo血答案qB2qE晅_+ 3qB审题指导1.粒子的运动过程是怎样的?2
23、尝试画出粒子的运动轨迹.3 .注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域I的匀强电场中做类平抛运动,设粒子过voA点时速度为v,由类平抛运动规律知v= COS粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得2Bqv = mR,所以2mvoR=茁3mvo22qEa.则有 qE = ma, votan 60 = at1,即(2) 设粒子在区域I的电场中运动时间为t1,加速度为t1=有1 20、M两点间的距离为L = 2at1图E q2 = qE m 2m审题答题规范(2分)(1分)(1分)(1分)(1分)规范解善步步得分2解析(1)粒子在磁场中运动时qvB =乎
24、R2泯T = v解得 T= 2nm= 4X 10-3 sqB(2)粒子的运动轨迹如图所示,t = 20X 10- 3 s时粒子在坐标系内做了两个圆周运动和三段类平抛运动,水平位移x= 3voT = 9.6X 10-2 m12竖直位移 y= ?a(3T)2优秀教案欢迎下载(2 r=20 x Ifr' &吋粒干的位置坐标;粒子从M点出发到第二次通过 CD边界所用时间为/3mv0 nm 8mvo (8+乂3 mv0 nm t=t1+12+13=-+逼+-qr=一-qz+3qB学科素养培养加强审題与建撲指导培菲学科解黯能力=8 m/.H的锂麼从垫标原点沿x轴正向运动.不计帕子頂力-求:
25、<3)X=24 x IO-h &时料干的速加.42.带电粒子在交变电场和交变磁场中的运动模型问题的分析【例3】分】如图14所示,任_rf打坐标系内珈任周期性变化的H场和磯场,陀场沿y轴圧拧向.磁场垂直瑕面(以向里为圧),电场和輕场吋变此规律如图所傅含務带电粒于时运动算有周期哇,f/fV-m-1)(3)设粒子在区域磁场中运动时间为t2则由几何关系知t2= T =6 3qB设粒子在 川区域电场中运动时间为 t3, a'nrt2vo 8mvo则 t3= 2Xa-=茁示.一质H; m=3.2)t 10- "kfi .电荷ffl; q=-l启xlOieX的蒂电粒干.4 t
26、O吋劇成BfT8 12 Ifi 20jAxT<tVjS l£J620r/(xK>-利舟禺期於式可直握求.(1 W子虑陽场中远动的周期;先槛摒电场和曙播变牝曲点定晟囱出运 幼轨睡,然石我罚就会;t现运动过杞可鳶 做两牛圖间诲动命三底養平抛运动權型.Eq = ma 解得 y= 3.6X 10-2 m故t = 20 X 10-3 s时粒子的位置坐标为:(1分)也阳可展蛊现坊怕堡代总有進料的特点: 有电坏无磁晞,肓寤埼无电韓.因此,井 运渤特点理是匀兗速直疑运劲和匀堆圖周 运动的级營.由两国臣可材侖岀i-20 " 10 Js到t-14 * 1C 3S抢+J为勺速圏周运动
27、皆 f 周期,又 词到煤也置.分析过程建模型 逐段研究画图示2 2(9.6x 10- m, 3.6x 10- m)(1 分)(3)t= 24x 103 s时粒子的速度大小、方向与 t = 20 x 103 s时相同,设与水平方向夹角 为(1分)(1分)(1分)(1分)(1分)(1分)(3)10 m/s 方向与x轴正向夹角a则 V=,V02+ Vy 2Vy= 3aTtan a= VyV0解得 v= 10 m/s3与x轴正向夹角 a为37°或arctan 4)斜向右下方答案 (1)4 x 10 s (2)(9.6 x 10 m, 3.6X 10一 m)3a 为 37 °(或 a
28、rctan 4)【突破训练3】 如图15甲所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上的场强大小为E= 2.5 xo2 N/C的匀强电场(上、下及左侧无界).一个质量为 m= 0.5 kg、电荷 量为q= 2.0 xo 2 C的可视为质点的带正电小球,在t = 0时刻以大小为V0的水平初速度向右通过电场中的一点P,当t = t1时刻在电场所在空间中加上一如图乙所示随时间周期性变化的磁场,使得小球能竖直向下通过D点,D为电场中小球初速度方向上的一点,PD间距为L, D到竖直面MN的距离DQ为L/ n设磁感应强度垂直纸面向里为正.(g =10 m/s2)Bq 1II°耐Si譎码和
29、图15(1)如果磁感应强度 B0为已知量,使得小球能竖直向下通过D点,求磁场每一次作用时间t0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B0为已知量,试推出满足条件的时刻t1的表达式(用题中所给物理量的符号表示);若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁 感应强度B0及运动的最大周期 T的大小(用题中所给物理量的符号表示 ).答案(1)3 nm2qB02 7mv0qL6LV0解析 (1)当小球仅有电场作用时: mg= Eq,小球将做匀速直线运 动.在t1时刻加入磁场,小球在时间 t0内将做匀速圆周运动,圆周 运动周期为T0,若竖直向下通过 D
30、点,由图甲分析可知:3T03 nmt0=_04 2qB0甲(2) PF PD = R,即:V0t1 L = R2qv0B0= mv 0 /R所以 Voti L =mvoqBoLt1=+vomqBo小球运动的速率始终不变,当R变大时,To也增加,小球在电磁场中的运动的周期 T增加,在小球不飞出电磁场的情况下,当最大时有:LDQ = 2R=n2mvoqBoT乙2 nmvo2 tRBo= IT,To=肓=丄vo由图分析可知小球在电磁场中运动的最大周期:3To T = 8 X=vo,小球运动轨迹如图乙所示高考模拟提能训练走近高考捡测课堂效果損升解題能力【高考题组】1 . (2012课标全国25)如图1
31、6,一半径为 R的圆表示一柱形区域的横截面(纸面)在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线从圆上的 a点射入柱形区域,从圆上的b3点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为-5R现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a点射入柱形区域,也从b点离开该区域若磁感应强度大小为B,不计重力,求电场强度的大小.答案瞬r,由牛顿第二定律5m解析 粒子在磁场中做圆周运动设圆周的半径为2和洛伦兹力公式得 qvB = mr式中v为粒子在a点的速度.过b点和O点作直线的垂线,分别与直线交于 c点和d点.由几何关系知,线段a
32、c、be和过a、b两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此E,粒子在电场中做类平抛运动.设ac = be = r4设cd = x,由几何关系得 ac = R+ x5Tc =詁+ ,'r2 X2联立式得r = 7r5再考虑粒子在电场中的运动.设电场强度的大小为其加速度大小为 a,由牛顿第二定律和带电粒子在电场中的受力公式得qE = ma粒子在电场方向和直线方向运动的距离均为r,由运动学公式得r = fat2r = vt式得式中t是粒子在电场中运动的时间.联立_ 14qRB25m2. (2012浙江理综24)如图17所示,两块水平放置、相距为 d的长- 'tx x x
33、x d 金属板接在电压可调的电源上.两板之间的右侧区域存在方向 、 r ,垂直纸面向里的匀强磁场将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m、水平速度均为Vo、带相等电荷图17量的墨滴调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M点.(1) 判断墨滴所带电荷的种类,并求其电荷量;(2) 求磁感应强度B的值;使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板 MB',则B'的大小为多少?voU4voU疔斎(3) 现保持喷口方向不变, 点,应将磁感应强度调至 答案(1)负电荷罟解析 (1)墨滴在电场区
34、域做匀速直线运动,有Uqd mg由式得:q 罟由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有2V0qvoB m-R考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径R d由式得B-穿R',有(3) 根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为2,V°qvoB Er,-2)2-5d联立式可得:4voUR,2 d2 + (R'由式得:R'由图可得:B,金屈扱板Aft带电L轅相二笏; 发射源p5g
35、d3. (2012重庆理综24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有匀强电场,方向竖直向上,其中 PQNM矩形区域内 还有方向垂直纸面向外的匀强磁场.一束比荷 (电荷 量与质量之比)均为1的带正电颗粒,以不同的速率k沿着磁场区域的水平中心线0' 0进入两金属板之间,图18其中速率为vo的颗粒刚好从 Q点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g, PQ= 3d, NQ = 2d,收集板与NQ的距离为I,不计颗粒间的相互作用求:(1) 电场强度E的大小;(2) 磁感应强度B的大小;速率为 血o( 41)的颗粒打在收集板上的位置到O点的距
36、离.答案见解析解析 (1)设带电颗粒的电荷量为 q,质量为m.由于粒子从Q点离开磁场后做匀速直线运 动,则有Eq = mg 将m=k代入得E = kg.(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的2 向心力,则有 qvoB = m而由几何知识有2 2 2R2= (3d)2 + (R d)2联立解得kv0B =乔.(3)设速度为 "0的颗粒在磁场区域运动时竖直方向的位移为离开磁场后做匀速直线运动时竖直方向的位移为y2,偏转角为 0如图所示,有(血。2q "oB = m一R1将q =1及式代入式,得m k3dRi= 5d 入tan 0=,R2 - (3d)2 y
37、1 = R1 . R2 -(3d2)y2= lta n 0则速率为”0(?>1)的颗粒打在收集板上的位置到O点的距离为y= yi + y2解得 y= d(5寸25* 9) + r 3l .勺2595E = 4 X 10 N/C、【模拟题组】4. 如图19所示,坐标平面第I象限内存在大小为方向水平向左的匀强电场,在第n象限内存在方向垂直纸面向 里的匀强磁场.质荷比为 m = 4X 10 10 N/C的带正电粒子从xq轴上的A点以初速度vo= 2X107 m/s垂直x轴射入电场,OA =图190.2 m,不计重力.求:(1)粒子经过y轴时的位置到原点 O的距离;(2)若要求粒子不能进入第三象
38、限,求磁感应强度B的取值范围(不考虑粒子第二次进入电场后的运动情况.)答案 (1)0.4 m (2)B > (2 2+ 2) X 102 T解析(1)设粒子在电场中运动的时间为t,粒子经过y轴时的位置与原点 O的距离为y,则:Soa= *at2y= V0t联立解得 a= 1.0X 1015 m/s2 t = 2.0X 10-8 s y= 0.4 m(2)粒子经过y轴时在电场方向的分速度为:vx= at= 2 X 107 m/s粒子经过y轴时的速度大小为:v = :vx2+v02= 2 , 2X 107 m/sVx与y轴正方向的夹角为0, = arctan 一 = 45°V0X
39、XX XX XX X要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周运动的轨道半径为 R,则:R+ 2 Rw y2V_qvB = mR联立解得 B > (2 ,2+ 2) X 10-2 T.5. 如图20甲所示,在以 O为坐标原点的xOy平面内,存在着范围足够大的电场和磁场, 一个带正电小球在t= 0时刻以V0= 3gt0的初速度从O点沿+ x方向(水平向右)射入该空 间,在t0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E0= mg,磁场垂直于xOy平面向外,磁感应强度大小 B0 = nm,已知小球的质量为 qqt。m,带电荷量为q,时间单位为t。,当地
40、重力加速度为 g,空气阻力不计试求:图20(1)t0末小球速度的大小;答案lOgto93+ 3. 2(4) 2+ r gt解析 (1)由题图乙知,0to内,小球只受重力作用,做平抛运动,在v =7V0x2+V0y2=寸(3gt° f +(gt0 (= T0gt°当同时加上电场和磁场时,电场力F1= qE0= mg,方向向上t0 末:因为重力和电场力恰好平衡,所以小球只受洛伦兹力而做匀速圆周运动,有2 n*运动周期T=,联立解得T= 2t0v由题图乙知,电场、磁场同时存在的时间正好是小球做匀速圆周运动周期的2qvB0= mT5倍,即在小球做圆周运动的周期 T和12to末小球速
41、度的大小;在给定的xOy坐标系中,大体画出小球在0到24to内运动轨迹的示意图;(4) 30 to内小球距x轴的最大距离.(2)2to13gto见解析图20这10t0内,小球恰好做了 5个完整的匀速圆周运动所以小球在t1= 12t0时刻的速度相当于小球做平抛运动 t = 2t0时的末速度.Vy1 = g 2t0= 2gt0, Vx1= V0x= 3gt0 所以 12t0 末 V1= Vx+Vy/ = 13gt0(3)2410内运动轨迹的示意图如图所示.分析可知,小球在30t0时与24t0时的位置相同,在24t0内小球相当于做了 t2= 3t°的平抛运动和半个圆周运动.23t0末小球平
42、抛运动的竖直分位移大小为12 92y2= 2g(3t0) = ?gt°竖直分速度 Vy2 = 3gt0 = V0,0= 45° °速度大小为mV2 3 .'2gt022=qB0ny3= y2 + (1 + cos 45 °2=所以小球与竖直方向的夹角为V2= 3 . 2gt0此后小球做匀速圆周运动的半径30t0内小球距x轴的最大距离:专题突破练带电粒子在复合场中的运动(限时:60分钟)?题组1 对带电粒子在叠加场中运动的考查1.如图1所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖 直足够长固定绝缘杆 MN,小球P套在杆上,已知 P的质量为
43、m, 电荷量为+ q,电场强度为E,磁感应强度为 B, P与杆间的动摩擦 因数为m,重力加速度为g小球由静止开始下滑直到稳定的过程中( )A .小球的加速度一直减小2 卩 qE- mg2qB2 卩 mg2 qBB .小球的机械能和电势能的总和保持不变C 下滑加速度为最大加速度一半时的速度可能是D .下滑加速度为最大加速度一半时的速度可能是答案 CDA4XXmg KqvB Eq)解析 对小球受力分析如图所示,则mg- KEq qvB)= ma,随着v的增加,小球加速度先增加,当Eq = qvB时加速度达到最大值 amax=g,继续运动,mg gvB Eq) = ma,随着v的增加,a逐渐减 小,
44、所以A错误因为有摩擦力做功,机械能与电势能总和在减 小,B错误若在前半段达到最大加速度的一半,则mg KEq g2 k q mgqvB) = mg,得v =,若在后半段达到最大加速度的一半,则22 k qBg2 k q & mg=m2,得 v = -2 q,故 c、d 正确.22 k qBB-2 .如图2所示,已知一带电小球在光滑绝缘的水平面上从静止开始 经电压U加速后,水平进入互相垂直的匀强电场E和匀强磁场的复合场中(E和B已知),小球在此空间的竖直面内做匀速圆周 运动,则(2 nA .小球可能带正电B .小球做匀速圆周运动的半径为C .小球做匀速圆周运动的周期为D .若电压U增大,
45、则小球做匀速圆周运动的周期增加答案 BC解析 小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg= Eq,则小球带负电,A错误;因为小球做圆周运动的向心力为洛伦兹力,由牛顿第二定律和动2i能定理可得:Bqv=, Uq = mv2,联立两式可得:小球做匀速圆周运动的半径r =.',2UE,由T =力可以得出T =乎,与电压U无关,所以B、C正确,D错误.B gvBg图33. 如图3所示,空间的某个复合场区域内存在着方向相互垂直的匀强 电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于 复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的 动能为Ek那么氘核同样由静止
46、开始经同一加速电场加速后穿过同 一复合场后的动能 Ek '的大小是(B . Ek' >EkC . Ek' <EkD 条件不足,难以确定答案 B解析 设质子的质量为 m,则氘核的质量为 2m.在加速电场里,由动能定理可得:eU =1 2Emv ,在复合场里有:Bqv= qE? v =,同理对于氘核由动能定理可得其离开加速电场2 B的速度比质子的速度小,所以当它进入复合场时所受的洛伦兹力小于电场力,将往电场 力方向偏转,电场力做正功,故动能增大,B选项正确.?题组2 对带电粒子在组合场中运动的考查4. 如图4所示,两块平行金属极板 MN水平放置,板长 L = 1
47、 m.间距d*3 m,两金属 板间电压Umn = 1 X 104 V ;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形 ABC内存在垂直纸面向里的匀强磁场B!,三角形的上顶点 A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板 N的右端点;正三 角形FGH内存在垂直纸面向外的匀强磁场B2.已知A、F、G处于同一直线上,B、C、H2也处于同一直线上.AF两点的距离为3 m.现从平行金属板 MN左端沿中心轴线方向入 射一个重力不计的带电粒子,粒子质量m = 3X 10 10 kg ,带电荷量q=+ 1 X 10 4 C,初速度 v°= 1 X 1
48、05 m/s.图4(1) 求带电粒子从电场中射出时的速度 v的大小和方向;(2) 若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度 B1;若要使带电粒子由 FH边界进入FGH区域并能再次回到 FH界面,求B2应满足的 条件.答案 穿X 105 m/s与水平方向夹角为30 °33, 一 2+ .3肓T (3)大于T解析 (1)设带电粒子在电场中做类平抛运动时间为t,加速度为a, 呼=mad故 a=中=x 1010 m/s2dm 3L5t = 1X 10-5 svo竖直方向的速度为 Vy= atnfx 105 m/s2/"3射出电场时的速度为 v = . v
49、02+vy2= 訂X 105 m/s速度v与水平方向夹角为0, tan 0= 亠誓,故0= 30°,即垂直于AB方向射出vo 3带电粒子出电场时竖直方向偏转的位移y = 1at2=¥ m =号,即粒子由P点垂直AB边-JQ射入磁场,由几何关系知在磁场ABC区域内做圆周运动的半径为R1= 亏 = - mcos 303,mvmv 33由B1qv =芮知B1 =丙=祐T(3)分析知当运动轨迹与边界 GH相切时,对应磁感应强度 B2最小,运动轨迹如图所示:R2 由几何关系可知R2 +sin 60故半径 R2= (2 3 3) m2v乂 B2qv = mR,2 + V3 故 B2=T
50、5所以B2应满足的条件为大于T.55.如图5所示,一个质量为 m、电荷量为q沿图示方向以一定的速度射入磁感应强度为中,磁场方向垂直纸面向里.结果离子正好从距小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在 G处,而G处距A点2d(AG丄AC). 不计离子重力,离子运动轨迹在纸面内求:GXX图5的正离子,在D处B的匀强磁场A点为d的(1) 此离子在磁场中做圆周运动的半径 r;(2) 离子从D处运动到G处所需时间;(3) 离子到达G处时的动能.答案 °)3d迸2严(3)解析(1)正离子轨迹如图所示.圆周运动半径r满足:9md= r + rcos 602 解得r
51、 = 3dvoqvoB= mV0,(2)设离子在磁场中的运动速度为2 n 2 nT =voqB由图知离子在磁场中做圆周运动的时间为:则有:12 nti =1 T= 131 3Bq离子在电场中做类平抛运动,从C到G的时间为:t2 = ° =vo Bq1.9 + 2 n m 离子从Df Cf G的总时间为:t= t +12=3Bq设电场强度为E,则有:qE = ma12d = qat 21 2由动能定理得:qEd = EkG- 2mv0解得EkG =2 24B q d9mq=m106 C/kg的正电荷置于电场中的O点由静止释放,经过护10- 5 s后,电荷以Vo=匸5 X?题组3 对带电粒子在交变的电场或磁场中运动的考查6. 如图6甲所示,水平直线 MN下方有竖直向上的匀强电场,现将一重力不计、比荷410 m/s的速度通过 MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度 B按图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育机构绿化管理合约3篇
- 旅游休闲审计服务合同3篇
- 居民建议小区服务品质改进3篇
- 招标文件邀请格式模板3篇
- 招标进行时装修公司招募3篇
- 布草租赁合同范例3篇
- 房屋买卖合同的价格规定3篇
- 热气球基地景观施工合同
- 水电站加固施工协议
- 玻璃制品喷漆装饰合同
- 《大学生就业与创业指导》课件-第9章 大学生创业指导
- 2024-2030年中国建设工程质量检测行业发展模式规划分析报告
- 2024甘肃省建筑安全员-A证考试题库及答案
- 华中农业大学《操作系统实验》2021-2022学年第一学期期末试卷
- 国家开放大学电大11251丨操作系统(统设课)期末终考题库及答案
- 2024年贵州省中考数学真题含解析
- 东南大学版三基内科
- 【MOOC】线性代数-浙江大学 中国大学慕课MOOC答案
- 2024年高考语文二轮复习:语言综合运用新情境新题型(练习)
- 小数乘除法竖式计算专项练习题大全(每日一练共23份)
- 计算机程序设计语言(Python)学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论