模式识别及其在数字图像处理中的应用_第1页
模式识别及其在数字图像处理中的应用_第2页
模式识别及其在数字图像处理中的应用_第3页
模式识别及其在数字图像处理中的应用_第4页
模式识别及其在数字图像处理中的应用_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、模式识别及其在数字图像处理 中的应用作者:日期:模式识别及其在数字图像处理中的应用摘要:模式识别是人工智能领域的基础,随着计算机和人工智能技术的发展,模 式识别在图像处理中的应用日益广泛。近年来,模式识别也去的了很多让人瞩目 的成就,有很多不可忽视的进展。数字图像处理乂称为计算机图像处理,它是指 将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像是人类获取 和交换信息的主要来源,图像处理的应用领域必然涉及到人类生活和工作的方方 面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 基于模式识别的图像处理随着当今计算机和人工智能技术的发展,已经成为了图 像识别领域的踪

2、影研究方向。本文首先介绍了图像模式识别的基本理论和基本方 法,然后阐述了模式识别在图像处理中应用理论,最后举例说明了模式识别在图 像处理中的具体应用。关键字:模式识别:人工智能;图像处理;特征提取;识别方法1模式识别技术的基本理论1.1模式识别的基本框架模式识别是通过计算机对信息进行处理、判别的一种分类过程,是信号处理 与人工智能的一个重要分支。人工智能是专门研究用机器人模仿人的动作、感觉 和思维过程与规律的一门学科,而模式识别就是通过计算机用数学技术方法来研 究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术 和人工智能的发展,人类有可能研究复杂的信息处理过程。信息处理过

3、程的一个 重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息 (通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式 识别的两个重要方面。在图像处理中,识别场景中的对象或区域是一个重要课题。图像模式识别的 任务是从策略对象集的场景中识别对象。每个对象都是一种模式,并且策略值是 模式的特征,同特征的相似对象集属于具体的模式类,测量特征的技术称为特征 提取。模式识别的基本框架如图1所示:图1模式识别的基本框架1. 2.1决策理论法在模式识别中,已经使用了一些模式分类技术。这些技术中的一些技术被称 为决策理论技术,在这种技术中,未知的模式分类是由一些确定的、统计的

4、或者 模糊理论的基本原理进行决策。决策理论的模块图如图2所示:测试模式样本模式分类输出图2决策理论模式分类器模块图决策理论模式识别技术主要分为基于有监督学习的分类方法和使用无监督 技术的分类方法。有监督的分类方法乂可分为有参数分类器和非参数分类器。在有参数监督的 分类中,用大量标注训练样本模式集训练分类器,并估计每类模式的统计参数。 其中,最小距离分类器和最大似然分类器是频繁使用的有监督算法。无监督分类技术不考虑参数,常使用一些非参数的技术,例如K近邻技术、 Parzen窗技术等。在无监督的情况下,根据一些相似标准机器分割整个数据集, 结构产生了聚类集,模式中的每个聚类集都属于具体类。1. 2

5、. 2句法方法在句法模式识别中,关键问题是使用属于不同模式类的样本集推断适当的文 法。文法推断问题是一个首要问题。这种方法是基于基本假设,每个模式至少存 在一个文法描述。每个模式类文法描述的识别和提取形成了设计综合模式分类器 的核心问题。文法推断问题包括使用在研究中的样本模式集获得文法的算法开 发。因此这可以视为使用有限的并且增长的训练模式集进行学习的方法。在文法 模式分类中,属于特殊模式类的字符串可以作为形成属于语言的句子,这些句子 对应于模式类。如果每个字符串都属于该模式类,机器就可以识别这个模式类, 对于不在该模式类中的任何字符串,机器决策它是否是语言的成员,要么拒绝, 要么永久接受。对

6、于自动机的自动化造句而言,接受字符串属于特殊模式类,已 经有了一些成熟的技术。1.2.3人工神经网络人工神经网络已经广泛使用于图像分割和对象分类问题。这些网络本质上是 学习网络,用于场景中像素或对象的分类。它们是大量互联的神经元集,并行地 执行学习任务。神经元由生物神经元建模,因此它们被命名为神经网络。根据学 习过程的类型,这些网络可以分为有监督或无监督网络。1.2.4小结在低级II算机视觉和图像处理中,图像模式识别和分类是重要任务。图像模 式识别的关键是对图像的分类和解译。在图像分析的不同领域已经发现了这些技 术的广泛应用,即分割,像素分类和图像的解译。2基于模式识别技术的图像处理2.1 基

7、于模式识别技术的图像分割把图像按相关度划分成各具特色的区域并提取出所需目标的技术和过程称为 图像分割。分割的关键在于分割依据的确定。从模式识别技术理论上考虑图像分 割问题,分割是针对图像所需分割的对象,根据图像的结构特性将图像的所有组 成部分分成“分割”类和“非分割类”两类。对于任何一个事物都有与其他事物 相互区别的一些本质特征,必然可以提取出本质特征能够与分割背景图像相区别 并作为识别事物的依据,即为分割依据。在分割图像定位对象时,可以选择由特征 组成的特征空间进行定位识别。因此,将分割对象视为模式识别的对象,图像分割 的过程是为在模式识别中寻找特定模式类,并按照该模式类的特征,结合与其对

8、应的分割技术进行分割。2.2 基于模式识别技术的图像特征提取由于图像的随机性和数据量大,增加了在图像中选取有效的图像特征的难度, 并直接影响到图像识别系统的性能。所以完成图像识别的首要任务为提取有效的 图像特征。然而在很多实际问题中不易找到所需的特征,或由于条件限制不能对 它们进行测试,于是把特征选择和提取任务复杂化,成为构建模式识别系统困难 的任务之一。图像的原始特性或属性被称为图像特征。其中有些是自然特征,有 些是人为特征。特征提取是提取特征,经筛选或变换直到得出有效特征的全过程。 其根本任务是选择有效的特征,并运用相应的技术进行特征提取。基于模式识别 技术的图像特征提取工作的结果是给出了

9、某一具体图像与其它图像相区别的特 征。2.3 基于模式识别技术的图像识别图像识别是图像处理的高级阶段,其研究的是通过仪器对周围物体的视觉图 像进行分析和识别,从而可得到有效的结论性判断。但是,为了使计算机系统也能 认识人类视觉系统认识的图像,人们必须研究出计算方法,分析图像特征,因而将 模式识别技术应用到图像识别中,进而将图像特征能用数学方法表示出来并教会 计算机也能认识、识别这些特征。3基于模式识别技术的生物医学图像处理3.1 概述生物统计的识别系统在一些应用中非常有用,例如商务和执法应用,特别是 在犯罪识别、安全系统、可视电话、信用卡验证以及用于识别个人身份的证件照 片验证等方面。人脸的识

10、别、指纹、签名和许多其他生物统计图像在计算机视觉领域中构成了重要的研究领域。基于模式识别的自动人脸识别已经有了很多实现方案。人脸识别中主要的策 略要么是基于特征的,要么是基于人脸空间的,例如特征脸或Fisher脸。大多 数特征提取的方法都是从人脸的正视图中提取特征,有时也从侧面人脸轮廓中提 取特征。自动人脸识别系统既使用正面也使用侧面,所有更加准确,因为它利用 了子人脸的两个视图中固有可利用的明确信息。下面介绍用于人脸识别的特征提 取和匹配技术。3. 2特征选择首先从人脸的正视图和侧视图中辨识标志点集合,然后使用它们之间的基于 区域、角度和距离的特征向量。侧面轮廓特征提供了人脸额外的结构轮廓信

11、息, 这些信息从正视图中是看不到的,所以从两个视图中提取特征集通常能够有效地 应用于人脸识别,并且与只使用一个视图的特征的系统相比,可靠性更高。3. 3正面面部特征提取提取一些正面面部分量,例如眼睛、眉毛等,开始时选择眼睛模板集,面部 图像f(i,j)以适当选择的模板集T(m,n)进行卷积运算,由以下滤波器操作表示:F(Lj)= 22 T(m, n) * f(i + m,j + n)这个卷积过程在滤波器的输出产生了能力测试集。从卷积滤波器的输出确定 眼睛的位置,使用平移、尺度和选择不变仿射变换,我们可以从卷积滤波器检测 出眼睛。一旦检测出两只眼睛,眼眉位置可能位于眼睛中心的小搜索区域之内。 随

12、后,沿虹膜列可以川一半的眼眉模板窗口与眼眉模板集合匹配来检测上述左右 眼睛之上的眉眼。一些正面面部特征具有不变特征,它不随面部表示而改变,而 其他的是变化的特征。图3给出了正面面部点。在正面面部特征提取中,眼睛是 重要的角色。(a)(b)正面脸的一些 基准特征点(c)(d)侧面外形抡廓具 有标记的基准点侧视图二进制侧视图图3正面面部点3.4侧面面部特征提取人脸的侧视图选择的标志点是:鼻子点、颌下点、前额点、鼻梁点、眉间点 和嘴角点。将侧面脸的数字图像变化为侧面外形轮廓,然后提取标志点。侧面面 孔图像是一幅二进制图像,从每个侧面轮廓获得的标志点提取7个距离测量和一 个区域测量。3.4.2距离和区

13、域测量计算距离测量的提取标志点如图4所示,正视图和侧视图的特征集合形成组 合特征向量,这些特征向量阵列表示面部图片,所以我们希望对于不同的脸部, 这些向量阵列是不同的。我们将这些特征阵列存储在文件中,并且具有主索引号。 为了消除尺度作用,将鼻子点和鼻梁点间的距离,侧视图的距离测量和面积测量 值,两眼间的距离和正面脸的测量值进行归一化处理。图4侧面面部点3.5人脸识别从人脸的正视图和侧视图提取最佳特征集,并且将这些特征值存储在独立的 文件中,主要脸数据文件中的向量称为M向量,对于未知的样本,测试数据文件 包含15维特征向量。为了减少匹配特征向量值计算的复杂性,将这些特征向量 与它们的主索引一起升

14、序存储。将测试特征值插到每个特征向量(列)的排序特 征列表的适当位置。测试样本模式的两个最近邻居在每列中进行识别,并且评估 它们的相似性。下面就K-近邻算法给出人脸识别的步骤:步骤1在每一列,将特征值与它们的主索引一起升序排列。步骤2在每列的适当位置插入测试样本的每个特征向量。步骤3在每列中去掉两个最近邻居,并对两个最近的邻居计算测试模式的 相似性,每个都有主索引。步骤4对所有主索引计算测试模式的所有相似性。步骤5给测试人脸分配具有最大相似性值的主索引。如果在测试文件中的人脸不属于任何存储在主要数据文件的人脸,对于这个测试脸,将给出.与其最相似的分类索引。4结语随着计算机和人工智能技术的发展,

15、人们对模式识别技术在图像处理中的应 用越来越重视。同时,模式识别涉及并利用到数学、计算机科学等多学科的理论 知识,而将这些学科的新技术和成就综合运用到模式识别中,提出更符合需求的 模式识别技术是今后值得研究的重要课题。5参考文献1边肇祺,张学工,等.模式识别(第二版)M.北京:清华大学出版社2000-01.2沈清,汤森.模式识别导论M.长沙:国防科技大学出版社,1991.3 Karayiannis N B, Pai P I. A fuzzy vector quantization algorithms and their application in image compression J.IEEE Transaction on Image Processing, 1995,4(9):1 193-1 201.4 Chen Li, Yap Kim-Hui. A fuzzy K-n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论