(推荐下载)LES,DNS,RANS三种模拟模型计算量比较及其原因_第1页
(推荐下载)LES,DNS,RANS三种模拟模型计算量比较及其原因_第2页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(完整word版)LES.DNS.RANS三种模拟模型计算量比较及其原因编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们 对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(完整word版)LESQNS,RANS三种模拟模型计算量比较及其原因)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以 下为(完整word版儿ESQNSRANS三种模拟模型计算量比较及其原因的全部内容。LES,

2、 DNS, RANS模型计算量比较摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有 三种:直接数值模拟(Direct Numer ical Simulation: DNS) , Reynolds平均方法(Reynolds Average Navier-Stokes: RANS)和大涡模拟(Large Eddy Simulation: LES)。直接数值模拟目前只限于较小Re数的湍流,其结果可以用来探索湍流的一些基本物理机理。RANS方程通过对Navier-Stokes方程进行系 综平均得到描述湍流平均量的方程;LES方法通过对Navier-Stoke

3、s方程进行低通滤波得到描述湍流大尺 度运动的方程,RANS和LES方法的计算量远小于DNS.目前的计算能力均可实现.关键词:湍流;直接数值模拟;大涡模拟;雷诺平均模型1 1 引言湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,这种 运动表现出非常复杂的流动状态,是流体力学中有名的难题,其复杂性 主要表现在湍流流动的随机性、有旋性、统计。传统计算流体力学中描 述湍流的基础是 Navier-StokesNavier-Stokes (N(N 一 S)S)方程,根据 N-SN-S 方程中对湍流处 理尺度的不同,湍流数值模拟方法主要分为三种:直接数值模拟(DNS)(DNS)、 雷诺平均方法(RA

4、NS)(RANS)和大涡模拟(LES)(LES) o o 直接数值模拟可以获得湍流场 的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满 足对高雷诺数流动模拟的需要,从而限制了它的应用范围.雷诺平均方法 可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场 紊动的细节信息大涡模拟基于湍动能传输机制,直接计算大尺度涡的运 动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得 到较雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比 直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用.2 2 直接数值模拟(DNS)(DNS)湍流直接数值模拟(DNS

5、)(DNS)就是不用任何湍流模型,直接求解完整的 三维非定常的 N N S S 方程组,计算包括脉动在内的湍流所有瞬时运动量 在三维流场中的时间演变。2. 1控制方程用非稳态的N - S方程对紊流进行直接计算,控制方程以张量形式给出:(1)(2)2o 2主要数值方法由于最小尺度的涡在时间与空间上都变化很快,为能模拟湍流中的小尺度结构, 具有非常高精度的数值方法是必不可少的。2o 2. 1谱方法或伪谱方法所谓谱方法或伪谱方法是目前直接数值模拟用得最多的方法,简单来说,就是将所有未知 函数在空间上用特征函数展开,成为以下形式:(3)其中,与,都是已知的正交完备的特征函数族。在具有周期性或统计均匀性

6、的空间方向一般 都采用Fourier级数展开,这是精度与效率最高的特征函数族。在其它情形,较多选用Chebyshev多项式展开,它实质上是在非均匀网格上的Four ier展开。此外,也有用Legendre, Jacobi, Hermite或Laguerre等函数展开,但它们无快速变换算法可用。如将上 述展开式代入N-S方程组,就得到一组所满足的常微分方程组.对时间的微分可用通常的有限 差分法求解。在用谱方法计算非线性项例如的Fourier系数时,常用伪谱法代替直接求卷积。伪谱法 实质上是谱方法与配置法的结合,具体做法是先将两量用Fourier反变换回到物理空间,再在 物理空间离散的配置点上计算

7、两量的乘积,最后又通过离散Fourier变换回到谱空间在有了 快速Fourier变换(FFT)算法以后,伪谱法的计算速度高于直接求两Fourier级数的卷积。但 岀现的新间题是存在所谓“混淆误差”,即在做两个量的卷积计算时会将本应落在截断范围 以外的高波数分量混进来,引起数值误差严重时可使整个计算不正确甚至不稳定,但在多数 情形下并不严重.且有一些标准的办法可用来减少混淆误差,但这将使计算工作量增.2o 2o 2高阶有限差分法高阶有限差分法的基本思想是利用离散点上函数值的线性组合来逼近离散点上的导数值。设为函数的差分逼近式,则(4)式中系数由差分逼近式的精度确定,将导数的逼近式代入控制流动的N

8、 S方程,就得 到流动数值模拟的差分方程。差分离散方程必须满足相容性和稳定性.2o 3优点(1)直接数值求解N-S方程组,不需要任何湍流模型,因此不包含任何人为假设 或经验常数。(2)由于直接对N - S方程模拟,故不存在封闭性问题,原则上可以求解所有 湍流问题。(3)能提供每一瞬时三维流场内任何物理量(如速度和压力)的时间和空间演变 过程,其中包括许多迄今还无法用实验测量的量。(4)采用数量巨大的计算网格和高精度流体力学计算方法,完全模拟湍流流场中从最大尺度到最小尺度的流动结构,描写湍流中各种尺度的涡结构的时间演变,辅 以计算机图形显示,可获得湍流结构的清晰与生动的流动显示.2. 4缺点DN

9、S的主要缺点是要求用非常大的计算机内存容量与机时耗费。据Kim ,Moin &Moser研究,即使模拟Re仅为3300的槽流,所用的网点数N就约达到了 2x2,在向量计算机上进行了250 h.3 3 雷诺平均模拟(RANS)(RANS)雷诺平均模拟(RANS)(RANS)即应用湍流统计理论,将非稳态的 N N - - S S 方 程对时间作平均,求解工程中需要的时均.所谓湍流模式理论,就是依据 湍流的理论知识、实验数据或直接数值模拟结果,对 ReynoldsReynolds 应力做出 各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均 ReynoldsReynolds 方程

10、封闭。3o 1控制方程对非稳态的N S方程作时间演算,并采用Boussinesp假设,得到Reynolds方程(5)(6)式中,附加应力可记为,并称为雷诺应力.这种方法只计算大尺度平均流动,而所有湍流脉动对平均流动的影响,体现到 雷诺应力中。正因为雷诺应力在控制方程中的出现,造成了方程不封闭,为使方程 组封闭,必须建立模型。3. 2主要方法目前工程计算中常用的湍流模型从对模式处理的岀发点不同,可以将湍流模式理 论分类成两大类:一类引入二阶脉动项的控制方程而形成二阶矩封闭模型,或称为 雷诺应力模型,另一类是基于Boussinesq的涡粘性假设的涡粘性封闭模式,如零方 程模型,一方程模型和二方程模

11、型.3o 2o 1雷诺应力模型雷诺应力模型(RSM)从Reynolds应力满足的方程岀发,直接建立以为因变量的偏微分方 程,将方程右端未知的项(生成项, 扩散项, 耗散项等)用平均流动的物理量和湍流的特征尺 度表示出来,并通过模化封闭。封闭目标是雷诺应力输运方程:(7)式中是雷诺应力再分配项,是雷诺应力扩散项,是雷诺应力耗散.典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的 变化规律,因而可以较好地反映湍流运动规律因此,二阶矩模式是一种较高级的模式,但是, 由于保留了Re

12、ynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个 庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限 制了二阶矩模式在工程问题中的应用。2.2o 2涡粘性模型在工程湍流问题中得到广泛应用的模式是涡粘性模式这是由Boussinesq仿照分子粘性 的思路提岀的,即设Reynolds应力为,(8)这里是湍动能,称为涡粘性系数,这是最早提岀的基准涡粘性模式,即假设雷诺应力与 平均速度应变率成线性关系,当平均速度应变率确定后,六个雷诺应力只需要通过确定一个 涡粘性系数就可完全确定,且涡粘性系数各向同性,可以通过附加的湍流量来模化,比如湍动 能k,

13、耗散率,比耗散率W以及其它湍流量,根据引入的湍流量的不同,可以得到不同的涡 粘性模式,比如常见的,k-w模式,以及后来不断得到发展的,qw, k-l等模式,涡粘性系 数可以分别表示为,(9)3. 3优点(1)对计算机的要求较低,同时可以得到符合工程要求的计算结果.(2) -旦给定合理的Reynolds应力模型, 可以很容易地从RANS方程解出湍流的 统计量,所需要的计算资源小。(3)几乎能对所有雷诺数范围的工程问题求解,并得出一些有用的结果.3. 3缺点(1)对不同类型的湍流,需要采用不同的Reynolds应力模型,甚至对于同一 类型的问题,对应于不同的边界条件需要修改模型的常数。(2)由于不

14、区分旋涡的大小和方向性, 对旋涡的运动学和动力学问题考虑不足, 不能用来对流体流动的机理进行描述。(3)对于非定常流动、大分离流动、逆压力梯度数值模拟等问题,受湍流模型 条件的限制,很难得到满意的计算结果。(4)严重依赖流场形状和边界条件,普适性差,计算很大程度上依赖于经验。4 4 大涡数值模拟(LES)(LES)湍流大涡数值模拟(LES)(LES)是有别于直接数值模拟和雷诺平均模式的 一种数值模拟手段。利用次网格尺度模型模拟小尺度紊流运动对大尺度 紊流运动的影响即直接数值模拟大尺度紊流运动,将 N-SN-S 方程在一个小 空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出 大涡

15、所满足的方程。4O1基本思想湍流运动是由许多大小不同的旋涡组成的。那些大旋涡对于平均流动有比较明 显的影响,而那些小旋涡通过非线性作用对大尺度运动产生影响大量的质量、热 量、动量、能量交换是通过大涡实现的,而小涡的作用表现为耗散。流场的形状, 阻碍物的存在,对大旋涡有比较大的影响,使它具有更明显的各向异性。小旋涡则 不然,它们有更多的共性,更接近各向同性,因而较易于建立有普遍意义的模型基 于上述物理基础,LES把包括脉动运动在内的湍流瞬时运动量通过某种滤波方法分 解成大尺度运动和小尺度运动两部分。大尺度要通过数值求解运动微分方程直接计 算出来,小尺度运动对大尺度运动的影响将在运动方程中表现为类

16、似于雷诺应力一 样的应力项,该应力称为亚格子雷诺应力,它们将通过建立模型来模拟.实现大涡数 值模拟,首先要把小尺度脉动过滤掉,然后再导出大尺度运动的控制方程和小尺度 运动的封闭方程。4. 2过滤函数大涡模拟第一步就是把一切流动变量划分成大尺度量和小尺度量,这一过程称 之为滤波。滤波运算相当于在一定区间内按一定条件对函数进行加权平均,其目的 是滤掉高波数而只保留低波数,截断波数的最大波长由滤波函数的特征尺度决定。 目前较为常用的滤波函数主要有以下三种:Deardorff的盒式(BOX)滤波函数、 富氏截断滤波函数和高斯(Gauss)滤波函数。不可压常粘性系数的紊流运动控制方程为N-S方:式中:S

17、拉伸率张量,表达式为:;分子粘性系数;流体密度。设将变量分解为 方程(门)中兀和次网格变量(模化变量),即,瓦可以采用leonard提出的算式表示 为:式中称为过滤函数,显然G(x)满足4O3控制方程(12)将过滤函数作用与N-S方程的各项,得到过滤后的紊流控制方程组:1dP6。2瓦)-卜-p dxidXj由于无法同时求解出变量和,所以将分解成,即称为次网格剪切应力张量(亦称 为亚格子应力)。由此动量方程又可写成:式中代表了小涡对大涡的影响。4. 4常用亚格子模式及其特点目前,在大涡模拟中经常广泛采用的亚格子模型有标准的Smagor insky模型、 动态涡粘性模型、 动态混合模型、 尺度相似

18、模型、 梯度模型、 选择函数模型。 其中Smagor i nsky模型被广泛应用。4. 4. 1亚格子涡粘和涡扩散模型不可压缩湍流的亚格子涡粘和涡扩散模型采用分子粘性和分子热扩散形式,即(14)(15)以上公式中和分别称为亚格子涡粘系数和亚格子涡扩散系数; 是可接尺度的变形率张量. 式(14)第2项是为了满足不可压缩的连续方程,当收缩时(二0)等式两边可以相等。将亚格子应力的涡粘模型公式(14)代入到(13)式中,变形得(16)(17)4. 4. 2 Smagor i nsky模型Smagor insky模型是由Smagor insky于1963年提岀来的,该模型是第一个亚格子模型。 广泛用于

19、大涡模拟中的涡粘模型认为亚格子应力的表达式如下:1 du.8如丿)- 1-dt dXj两8(的竹)dt dXj1dP X2S,5r.p dxi6x:dXj(13)(12)Tij一 ijTkk = -2vy SfJ(18)式中是可接尺度的变形率张量,是涡粘系数.1963年Smagor insky定义了涡粘系数:吟=(C(C5 5A)A)2 2S式中是变形率张量的大小,是过滤尺度,Cs无量纲参数称为Smagor insky系数.4。4. 3动态亚格子模式1991年, 提岀了动态亚格子模式, 该模式以Smagor insky模式为基本模型, 但克服了Smagorinsky模式的部分缺陷。动力模型实际

20、上是动态确定亚格子涡粘模型的系数。动力模 型需要对湍流场做两次过滤,一次是细过滤,细过滤后再做一次粗过滤。通过在网格尺度和 检验滤波器尺度条件下计算得到的应力差来确定应力模型系数,使模型系数成为空间和时间 的函数,从而避免了在模拟过程中对系数进行调节。因此比Smagor insky模式所采用的固定 系数值更加合理.4O4O4相似性模式1980年Bardina提岀了尺度相似模式。该模式假定从大尺度脉动到小尺度脉动的动量输 运主要由大尺度脉动中的最小尺度脉动来产生,并且过滤后的最小尺度脉度速度和过滤掉的小 尺度脉动速度相似.通过二次过滤和相似性假定可以导岀亚格子应力表达式采用这种模式能 正确预测墙

21、壁面附近的渐近特性,但预测各向不均匀的室内空气复杂流动准确性较差.4. 4. 5混合模式混合模式是将尺度相似模式和Smagor insky模式叠加来确定亚格子应力。这种模式既有 和实际亚格子应力良好的相关性,又有足够的湍动能耗散.4. 5优点(1)能够描述小尺度湍流流动,但是计算量远小于DNS,在科学研究和工程应 用上都显不出良好的发展前景。(2)用非均匀网格能够使网格数达到最少,节省计算资源,同时又能够保证足够 的计算精度.(3)网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节。(19)(4)相较于RANS方法,LES可以模拟更多的湍流大尺度运动,LES所用的湍流亚 网格应力模型受边界的

22、几何形状和流动类别的影响小,比RANS方法所用的Reynolds应力更具普适性。4。6缺点(1)小涡模型网格节点的划分极密集,需要庞大的计算机存储能力;(2)大量数据处理和非线性偏微分方程的求解需要高速数值处理能力;(3)仅用于比较简单的剪切流运动及管流。(4)由于实际湍流极其复杂, 数值模拟仍需要非常可观的计算时间和实验经费。5oLES,LES,DNS,DNS, RANSRANS三种模拟模型计算量比较LES, DNS, RANS三种模拟模型中DNS的计算量最大,LES的计算量介于另外两 者之间,而RANS的计算量最小。影响计算量的因素有三个:网格数量、流场的时 间积分长度(与计算时间长度有关

23、)和最小旋涡的时间积分长度(与时间步长有 关),其中网格数量是重要因素.直接数值模拟(DNS)中为了得到湍流问题足够精确的解,要求能够数值求解所 有旋涡的运动,因此要求网格的尺度和最小旋涡的尺度相当,即使采用子域技术, 其网格规模也是巨大的为了求解各个尺度旋涡的运动,要求每个方向上网格节点 的数量与成比例,考虑一个三维问题,网格节点的数量与成比例。一般的估计如下: 湍流中包含许多尺度不同的涡,为能模拟最小涡的运动,计算网格的分辨率应足以 分辨最小尺度的涡,后者以Kolmogorov定义的内尺度为代表。而计算区域的尺寸 应足以容纳最大尺度的涡,最大涡的尺度为L。因此在一个空间方向上的网点数目 至

24、少应与同量阶,而根据统计理论知道这个比值(20)于是整个三维空间所需的网点总数至少为(21)此数字也正是按非线性动力系统理论所估计的湍流的吸引子维数的上确界。计 算所需的内存容量应与此数成正比。另一方面计算的时间步长应小于最小涡的时间 尺度,而总的计算时间应大于最大涡的特征时间,因此需要计算的步数应不少于。 如假设每一时间步长的计算工作量,即使按最低限估计,与N成正比,则总的计算 工作量至少也要正比于或.假如对每一时间步的每一网点需执行100条机器指令, 则对一个的湍流问题,就需执行总共约条指令。这意味着在一个计算速度为每秒一 亿次的超级计算机上也要运行约30年。 如此巨大的计算工作量即使对当今世界上 最大的计算机也是不可接受的。 据Kim ,Mo in & Moser研,即使模拟Re仅为3300的槽流,所用的网点数N就约达到了,在向量计算机上进行了250 ho在现有的 计算机能力的限制下,即使在少数拥有世界最大的超级计算机的科学大国,目前也只 能计算中等以下雷诺数且有简单几何边界的湍流流。湍流大涡数值模拟与直接数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论