传热学第四版2222222_第1页
传热学第四版2222222_第2页
传热学第四版2222222_第3页
传热学第四版2222222_第4页
传热学第四版2222222_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章第二章 导热基本定律导热基本定律及稳态导热及稳态导热1 1 、重点内容:、重点内容: 傅立叶定律及其应用;傅立叶定律及其应用; 导热系数及其影响因素;导热系数及其影响因素; 导热问题的数学模型。导热问题的数学模型。 2 2 、掌握内容:、掌握内容:一维稳态导热问题的分析解法一维稳态导热问题的分析解法 3 3 、了解内容:、了解内容:多维导热问题多维导热问题 2 -1 2 -1 导热基本定律导热基本定律 一一 、温度场、温度场 (Temperature field)1 、概念、概念 温度场是指在各个时刻物体内各点温度温度场是指在各个时刻物体内各点温度分布的总称。分布的总称。 由傅立叶定律知

2、,由傅立叶定律知,物体的温度分布是坐物体的温度分布是坐标和时间的函数标和时间的函数: ,zyxft 其中其中 为空间坐标,为空间坐标, 为时间坐标。为时间坐标。 , ,x y z2 2 、温度场分类、温度场分类 1 1 )稳态温度场(定常温度场)稳态温度场(定常温度场) (Steady-state conductionSteady-state conduction) 是指在稳态条件下物体各点的温度分布不随是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,时间的改变而变化的温度场称稳态温度场,其表达式:其表达式:( , , )tf x y z2 2 )非稳态温度场(非定

3、常温度场)非稳态温度场(非定常温度场) (Transient conduction) 是指在变动工作条件下,物体中各点的温是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度分布随时间而变化的温度场称非稳态温度场,其表达式:度场,其表达式: 若物体温度仅一个方向有变化,这种情况若物体温度仅一个方向有变化,这种情况下的温度场称一维温度场。下的温度场称一维温度场。 ( , , , )tf x y z等温面与等温线等温面与等温线v等温线:等温线:用一个平面与各等温面相交,在这用一个平面与各等温面相交,在这个平面上得到一个等温线簇个平面上得到一个等温线簇v等温面:等温面:同一时刻

4、、温度场中所有温度相同一时刻、温度场中所有温度相同的点连接起来所构成的面同的点连接起来所构成的面等温面与等温线的特点:等温面与等温线的特点:v(1) (1) 温度不同的等温面或等温线彼此不能相温度不同的等温面或等温线彼此不能相交交v(2) (2) 在连续的温度场中,等温面或等温线不在连续的温度场中,等温面或等温线不会中断,它们或者是物体中完全封闭的曲面会中断,它们或者是物体中完全封闭的曲面(曲线),或者就终止与物体的边界上(曲线),或者就终止与物体的边界上v物体的温度场通常用等温面或等温线表示物体的温度场通常用等温面或等温线表示v等温线图的物理意义:等温线图的物理意义:v若每条等温线间的温度间

5、隔相等时,等温线若每条等温线间的温度间隔相等时,等温线的疏密可反映出不同区域导热热流密度的大的疏密可反映出不同区域导热热流密度的大小。如图所示是用等温线图表示温度场的实小。如图所示是用等温线图表示温度场的实例。例。二二 、导热基本定律、导热基本定律 1 、导热基本定律(傅立叶定律)、导热基本定律(傅立叶定律) 1 1 )定义:)定义:在导热现象中,单位时间内通过在导热现象中,单位时间内通过给定截面所传递的热量,正比例于垂直于该给定截面所传递的热量,正比例于垂直于该截面方向上的温度变化率,而热量传递的方截面方向上的温度变化率,而热量传递的方向与温度升高的方向相反,即向与温度升高的方向相反,即 x

6、tA2 2 )数学表达式:)数学表达式: xtA(负号表示热量传递方向与温度升高方向相反)(负号表示热量传递方向与温度升高方向相反) xtq3 3 )傅里叶定律用热流密度表示:)傅里叶定律用热流密度表示: 其中其中 热流密度热流密度( (单位时间内通过单位单位时间内通过单位面积的热流量面积的热流量) ) 物体温度沿物体温度沿 x x 轴方向的变化率轴方向的变化率 qxt当物体的温度是三个坐标的函数时,当物体的温度是三个坐标的函数时,其形其形式为式为: :nntgradtq是空间某点的温度梯度;是空间某点的温度梯度; 是通过该点等温线上的法向是通过该点等温线上的法向单位矢量,指向温度升高的单位矢

7、量,指向温度升高的方向;方向; 是该处的热流密度矢量。是该处的热流密度矢量。 gradtnq式中:式中:2 2 、温度梯度与热流密度矢量的关系、温度梯度与热流密度矢量的关系 如图如图 2-2 2-2 ( a a )所示,表示了微元面)所示,表示了微元面积积 dA dA 附近的温度分布及垂直于该微元面积附近的温度分布及垂直于该微元面积的热流密度矢量的关系。的热流密度矢量的关系。 1 1 )热流线)热流线 定义:热流线是一组与等温线处处垂直定义:热流线是一组与等温线处处垂直的曲线,通过平面上任一点的热流线与该点的曲线,通过平面上任一点的热流线与该点的热流密度矢量相切。的热流密度矢量相切。 2 2

8、)热流密度矢量与热流线的关系:)热流密度矢量与热流线的关系: 在整个物体中,热流密度矢量的走向可在整个物体中,热流密度矢量的走向可用热流线表示。如图用热流线表示。如图 2-2 2-2 ( b b )所示,其)所示,其特点是相邻两个热流线之间所传递的热流密特点是相邻两个热流线之间所传递的热流密度矢量处处相等,构成一热流通道。度矢量处处相等,构成一热流通道。 三三 、导热系数、导热系数 ( 导热率、比例系数)导热率、比例系数) 1 1 、导热系数的含义、导热系数的含义 导热系数的定义式由傅里叶定律的数学表达式导热系数的定义式由傅里叶定律的数学表达式给出:给出:qtnn 数值上等于在单位温度梯度作用

9、下物体内所数值上等于在单位温度梯度作用下物体内所产生的热流密度矢量的模。产生的热流密度矢量的模。 2 2、影响热导率的因素:、影响热导率的因素:物质的种类、材料成分、温度、物质的种类、材料成分、温度、湿度、压力、密度等湿度、压力、密度等; 金属非金属固相液相气相3 3 、保温材料(隔热、绝热材料)、保温材料(隔热、绝热材料) 把导热系数小的材料称保温材料。我国把导热系数小的材料称保温材料。我国规定:规定: 350 350 时,时, 0.12w/mk 0.12w/mk 保保温材料导热系数界定值的大小反映了一个国温材料导热系数界定值的大小反映了一个国家保温材料的生产及节能的水平。家保温材料的生产及

10、节能的水平。 越小,越小,生产及节能的水平越高。我国生产及节能的水平越高。我国 50 50 年代年代 0.23W/mk 80 0.23W/mk 80 年代年代 GB4272-84 0.14w/mk GB4272-84 0.14w/mk GB427-92 0.12w/mk GB427-92 0.12w/mk t4 、保温材料热量转移机理、保温材料热量转移机理 ( 高效保温材料高效保温材料 ) 高温时:高温时:( 1 1 )蜂窝固体结构的导热)蜂窝固体结构的导热 ( 2 2 )穿过微小气孔的导热)穿过微小气孔的导热 更高温度时:更高温度时:( 1 1 )蜂窝固体结构的导热)蜂窝固体结构的导热 (

11、2 2 )穿过微小气孔的导热和辐射)穿过微小气孔的导热和辐射 5 、超级保温材料、超级保温材料 采取的方法:采取的方法:( 1 1 )夹层中抽真空夹层中抽真空(减少通过导热而造成(减少通过导热而造成热损失)热损失) ( 2 2 )采用多层间隔结构采用多层间隔结构( 1cm 1cm 达十几层)达十几层) 特点:特点:间隔材料的反射率很高,减少辐间隔材料的反射率很高,减少辐射换热,垂直于隔热板上的导热系数可达:射换热,垂直于隔热板上的导热系数可达: 10 - 4w/mk 10 - 4w/mk 6 、各向异性材料、各向异性材料 指有些材料(木材,石墨)各向结构指有些材料(木材,石墨)各向结构不同,各

12、方向上的不同,各方向上的 也有较大差别,这些材也有较大差别,这些材料称各向异性材料。此类材料料称各向异性材料。此类材料 必须注明方必须注明方向。相反,称各向同性材料。向。相反,称各向同性材料。 2-2 2-2 导热微分方程式及定解条件导热微分方程式及定解条件 由前可知:由前可知: ( 1 1 )对于一维导热问题,根据傅立叶定)对于一维导热问题,根据傅立叶定律积分,可获得用两侧温差表示的导热量。律积分,可获得用两侧温差表示的导热量。 ( 2 2 )对于多维导热问题,首先获得温度)对于多维导热问题,首先获得温度场的分布函数,然后根据傅立叶定律求得空场的分布函数,然后根据傅立叶定律求得空间各点的热流

13、密度矢量。间各点的热流密度矢量。 一一 、导热微分方程、导热微分方程 1 、定义:、定义:根据能量守恒定律与傅立叶定律根据能量守恒定律与傅立叶定律,建立导热物体中的温度场应满足的数学表,建立导热物体中的温度场应满足的数学表达式,称为导热微分方程。达式,称为导热微分方程。 2 、导热微分方程的数学表达式、导热微分方程的数学表达式 导热微分方程的推导方法,假定导热物体是导热微分方程的推导方法,假定导热物体是各向同性的。各向同性的。 1 1 )针对笛卡儿坐标系中微元平行六面体)针对笛卡儿坐标系中微元平行六面体 由前可知,空间任一点的热流密度矢由前可知,空间任一点的热流密度矢量可以分解为三个坐标方向的

14、矢量。量可以分解为三个坐标方向的矢量。 同理,通过空间任一点任一方向的热同理,通过空间任一点任一方向的热流量也可分解为流量也可分解为 x x 、 y y 、 z z 坐标方向的坐标方向的分热流量,如图分热流量,如图 2-4 2-4 所示。所示。 通过通过 x=x x=x 、 y=y y=y 、 z=z z=z ,三个微元表,三个微元表面而导入微元体的热流量:面而导入微元体的热流量: x x 、 y y 、 z z 的计算。的计算。 根据傅立叶定律得根据傅立叶定律得 xyztdydzxtdxdzytdxdyz (a) 通过通过 x=x+dx x=x+dx 、 y=y+dy y=y+dy 、 z=

15、z+dz z=z+dz 三个三个微元表面而导出微元体的热流量微元表面而导出微元体的热流量 x+dx x+dx 、 y+dy y+dy 、 z+dz z+dz 的计算。根据傅立叶定的计算。根据傅立叶定律得:律得: x dxxxy dyyyz dzzztdxdydz dxxxxtdydxdz dyyyytdzdxdy dzzzz (b) 对于任一微元体根据能量守恒定律,在对于任一微元体根据能量守恒定律,在任一时间间隔内有以下热平衡关系:任一时间间隔内有以下热平衡关系: 导入微元体的总热流量导入微元体的总热流量 + + 微元体内热微元体内热源的生成热源的生成热 = = 导出微元体的总热流量导出微元体

16、的总热流量 + + 微微元体热力学能(内能)的增量元体热力学能(内能)的增量(c)微元体热力学能的增量微元体热力学能的增量= =tcdxdydz微元体内热源的生成热微元体内热源的生成热= =dxdydzc、 、其中其中 微元体的密度、微元体的密度、比热容、单位时间内单位体积内热源的生比热容、单位时间内单位体积内热源的生成热及时间。成热及时间。导入微元体的总热流量导入微元体的总热流量导出微元体的总热流量导出微元体的总热流量 xyz 入x dxy dyz dz 出将以上各式代入热平衡关系式,并整理得:将以上各式代入热平衡关系式,并整理得: )()()(ztzytyxtxtc这是笛卡尔坐标系中这是笛

17、卡尔坐标系中三维非稳态导热微分方三维非稳态导热微分方程的一般表达式程的一般表达式。 其物理意义:其物理意义:反映了物体的温度随时间和空反映了物体的温度随时间和空间的变化关系。间的变化关系。 1 1)对上式化简:)对上式化简: 导热系数为常数导热系数为常数 cztytxtat222222)(式中,式中, ,称为热扩散率。,称为热扩散率。)/( ca导热系数为常数导热系数为常数 、无内热源、无内热源 222222()ttttaxyz导热系数为常数导热系数为常数 、稳态、稳态 2222220tttxyz 导热系数为常数导热系数为常数 、稳态、稳态 、无内热源、无内热源 2222220tttxyz2

18、2)圆柱坐标系中的导热微分方程:)圆柱坐标系中的导热微分方程: 3 3)球坐标系中的导热微分方程:)球坐标系中的导热微分方程: 211()()()ttttcrrrrrzz22222111()()( sin)sinsinttttcrrrrrr综上说明:综上说明: ( 1 1 )导热问题仍然服从能量守恒定律;)导热问题仍然服从能量守恒定律; ( 2 2 )等号左边是单位时间内微元体热力学能的)等号左边是单位时间内微元体热力学能的增量(非稳态项);增量(非稳态项); ( 3 3 )等号右边前三项之和是通过界面的导热使)等号右边前三项之和是通过界面的导热使微分元体在单位时间内微分元体在单位时间内 增加

19、的能量增加的能量 ( ( 扩散扩散项项 ) ) ; ( 4 4 )等号右边最后项是源项;)等号右边最后项是源项;( 5 5 )若某坐标方向上温度不变,该方向的净导)若某坐标方向上温度不变,该方向的净导热量为零,则相应的扩散项即从导热微分方程中消热量为零,则相应的扩散项即从导热微分方程中消失。失。 二、二、 定解条件定解条件 1 、定义:、定义:是指使导热微分方程获得适合某是指使导热微分方程获得适合某一特定导热问题的求解的附加条件。一特定导热问题的求解的附加条件。 通过导热微分方程可知,求解导热问题,通过导热微分方程可知,求解导热问题,实际上就是对导热微分方程式的求解。预知实际上就是对导热微分方

20、程式的求解。预知某一导热问题的温度分布,必须给出表征该某一导热问题的温度分布,必须给出表征该问题的附加条件。问题的附加条件。2 、分类、分类 1 1 )初始条件:)初始条件:初始时间温度分布的初始条件;初始时间温度分布的初始条件; 2 2 )边界条件:)边界条件:导热物体边界上温度或换热情况的边导热物体边界上温度或换热情况的边界条件。界条件。 说明:说明: 非稳态导热定解条件有两个;非稳态导热定解条件有两个; 稳态导热定解条件只有边界条件,无初始条件。稳态导热定解条件只有边界条件,无初始条件。 3 3 、导热问题的常见边界条件可归纳为、导热问题的常见边界条件可归纳为 以下三类以下三类 (1 1

21、)规定了边界上的温度值,称为规定了边界上的温度值,称为第一类边第一类边界条件界条件。对于非稳态导热,这类边界条件要。对于非稳态导热,这类边界条件要求给出以下关系式:求给出以下关系式: 0wtf时(2 2)规定了边界上的热流密度值,称为规定了边界上的热流密度值,称为第第二类边界条件二类边界条件。对于非稳态导热,这类边界。对于非稳态导热,这类边界条件要求给出以下关系式:条件要求给出以下关系式:20()( )wtfn时(3 3)规定了边界上物体与周围流体间的表规定了边界上物体与周围流体间的表面传热系数及周围流体的温度,称为面传热系数及周围流体的温度,称为第三第三类边界条件类边界条件。第三类边界条件可

22、表示为。第三类边界条件可表示为()()wwfth ttn1 1 、热扩散率的物理意义、热扩散率的物理意义 由热扩散率的定义可知:由热扩散率的定义可知: 1 1 ) 是物体的导热系数,是物体的导热系数, 越大,在相越大,在相同温度梯度下,可以传导更多的热量。同温度梯度下,可以传导更多的热量。 2 2 )是单位体积的物体温度升高)是单位体积的物体温度升高 1 1 所需的热量。所需的热量。 越小,温度升高越小,温度升高 1 1 所吸收所吸收的热量越少,可以剩下更多的热量向物体内的热量越少,可以剩下更多的热量向物体内部传递,使物体内温度更快的随界面温度升部传递,使物体内温度更快的随界面温度升高而升高。

23、高而升高。()ac三、有关说明、有关说明由此可见由此可见 物理意义物理意义: 越大,表示物体受热时,其内部各点温越大,表示物体受热时,其内部各点温度扯平的能力越大。度扯平的能力越大。 越大,表示物体中温度变化传播的越快。越大,表示物体中温度变化传播的越快。所以,所以, 也是材料传播温度变化能力大小的指也是材料传播温度变化能力大小的指标,亦称导温系数。标,亦称导温系数。 2 、导热微分方程的适用范围、导热微分方程的适用范围 1 1 )适用于)适用于 q q 不很高,而作用时间长。同不很高,而作用时间长。同时傅立叶定律也适用该条件。时傅立叶定律也适用该条件。 2 2 )若时间极短,而且热流密度极大

24、时,则)若时间极短,而且热流密度极大时,则不适用。不适用。3 3 )若属极底温度()若属极底温度( -273 -273 )时的导热)时的导热不适用。不适用。 2-3 通过平壁,圆筒壁,球壳和通过平壁,圆筒壁,球壳和其它变截面物体的导热其它变截面物体的导热本节将针对一维、稳态、常物性、无内热源本节将针对一维、稳态、常物性、无内热源情况,考察平板和圆柱内的导热。情况,考察平板和圆柱内的导热。直角坐标系:直角坐标系:ztzytyxtxtc)()()(1 单层平壁的导热单层平壁的导热oxa a 几何条件:单层平板;几何条件:单层平板; b b 物理条件:物理条件: 、c c、 已知;已知;无内热源无内

25、热源 c c 时间条件:时间条件:: 0 t稳态导热 d d 边界条件:第一类边界条件:第一类xot1tt2120, , xttxtt根据上面的条件可得:根据上面的条件可得:第一类边条:第一类边条:0dd22xtxtxtc)(控制控制方程方程边界边界条件条件直接积分,得:直接积分,得:211 cxctcdxdt带入边界条件:带入边界条件:12121tcttc)(dd1212112Attttqttxttxttt带入带入Fourier 定律定律rRA热阻分析法适用于一维、稳态、无内热源的情况热阻分析法适用于一维、稳态、无内热源的情况线性线性分布分布2 、热阻的含义、热阻的含义 热量传递是自然界的一

26、种转换过程热量传递是自然界的一种转换过程 , , 与自然界的其他转换过程类同与自然界的其他转换过程类同 , , 如如 : : 电量电量的转换的转换 , , 动量、质量等的转换。其共同规动量、质量等的转换。其共同规律可表示为律可表示为 : :过程中的转换量过程中的转换量 = = 过程中的过程中的动力动力 / / 过程中的阻力。过程中的阻力。在电学中,这种规律性就是欧姆定律,即在电学中,这种规律性就是欧姆定律,即RUI 在平板导热中,与之相对应的表达式可改写在平板导热中,与之相对应的表达式可改写为为At这种形式有助于更清楚地理解式中各项的这种形式有助于更清楚地理解式中各项的物理意义。物理意义。式中

27、:式中:热流量热流量为导热过程的转移量;为导热过程的转移量; 温压温压 为转移过程的动力;为转移过程的动力; 分母分母 为转移过程的阻力。为转移过程的阻力。 t/A 由此引出热阻的概念:由此引出热阻的概念: 1 1 )热阻定义:)热阻定义:热转移过程的阻力称为热阻。热转移过程的阻力称为热阻。 2 2 )热阻分类:)热阻分类:不同的热量转移有不同的热阻,不同的热量转移有不同的热阻,其分类较多,如:其分类较多,如:导热阻、辐射热阻、对流热导热阻、辐射热阻、对流热阻等。阻等。对平板导热而言又分:对平板导热而言又分: 面积热阻面积热阻 R R A A :单位面积的导热热阻称面积单位面积的导热热阻称面积

28、热阻。热阻。 热阻热阻 R R :整个平板导热热阻称热阻。整个平板导热热阻称热阻。 3 3 )热阻的特点:)热阻的特点: 串联热阻叠加原则:在一个串联的串联热阻叠加原则:在一个串联的热量传递过程中,若通过各串联环节的热热量传递过程中,若通过各串联环节的热流量相同,则串联过程的总热阻等于各串流量相同,则串联过程的总热阻等于各串联环节的分热阻之和。联环节的分热阻之和。 3 3 多层平壁的导热多层平壁的导热v多层平壁:多层平壁:由几层不同材料组成由几层不同材料组成v例:例:房屋的墙壁房屋的墙壁 白灰内层、水泥沙浆白灰内层、水泥沙浆层、红砖(青砖)主体层等组成层、红砖(青砖)主体层等组成v假设各层之间

29、接触良好,可以近似地认为假设各层之间接触良好,可以近似地认为接合面上各处的温度相等接合面上各处的温度相等t1t2t3t4t1t2t3t4三层平壁的稳态导热三层平壁的稳态导热v 边界条件:边界条件:1110nniittxttxv 热阻:热阻:nnnrr,111由热阻分析法:由热阻分析法:niiinniinttrttq111111问:现在已经知道了问:现在已经知道了q q,如何计算其中第,如何计算其中第 i i 层的右侧壁温?层的右侧壁温?第一层:第一层: 11122111)(qttttq第二层:第二层:22233222)(qttttq第第 i i 层:层: iiiiiiiiqttttq111)(

30、4 单层圆筒壁的导热单层圆筒壁的导热圆柱坐标系:圆柱坐标系:ztztrrtrrrtc)()(1)(12假设单管长度为假设单管长度为l l,圆筒壁的外半径小于长,圆筒壁的外半径小于长度的度的1/101/10。一维、稳态、无内热源、常物性:一维、稳态、无内热源、常物性:第一类边界条件:第一类边界条件:1122rrttrrtt时时0)dd(ddrtrr(a)(a)对上述方程对上述方程(a)(a)积分两次积分两次: :211ln crctcdrdtr11122122ln; lntcrctcrc211121212121ln; ()ln()ln()ttrcctttr rr r第一次积分第一次积分第二次积分

31、第二次积分应用边界条件应用边界条件获得两个系数获得两个系数)ln()ln( 112121rrrrtttt将系数带入第二次积分结果将系数带入第二次积分结果显然,温度呈对数曲线分布显然,温度呈对数曲线分布下面来看一下圆筒壁内部的热流密度和热流分布情况下面来看一下圆筒壁内部的热流密度和热流分布情况21221dW mdln()tttqrrr r 12212()2 Wln()l ttrlqrr 111221ln()()ln()r rttttrr12211ln()ttdtdrrrr 虽然是稳态情况,但虽然是稳态情况,但热流密度热流密度 q q 与半径与半径 r r 成反比!成反比!求导求导根据热阻的定义,

32、通过整个圆筒壁的导热热阻为:根据热阻的定义,通过整个圆筒壁的导热热阻为:lddtR2)/ln(125 多层圆筒壁多层圆筒壁v由不同材料构成的多层圆筒壁,其由不同材料构成的多层圆筒壁,其导热热流量可按总温差和总热阻计算导热热流量可按总温差和总热阻计算1(1)111(1)11 W1ln2 W m1ln2nniiiinlniiiittrLrttqrr通过单位长度圆筒壁的热流量通过单位长度圆筒壁的热流量6、通过球壳的导热、通过球壳的导热对于内、外表面维持均匀衡定温度的空心球对于内、外表面维持均匀衡定温度的空心球壁的导热,再球坐标系中也是一个一维导热壁的导热,再球坐标系中也是一个一维导热问题。相应计算公

33、式为:问题。相应计算公式为:温度分布:温度分布:热流量:热流量:热阻:热阻:22121211()11rrttttrr12124()11ttrr 121114Rrr7 其它变面积或变导热系数问题其它变面积或变导热系数问题求解导热问题的主要途径分两步:求解导热问题的主要途径分两步: 求解导热微分方程,获得温度场;求解导热微分方程,获得温度场; 根据根据FourierFourier定律和已获得的温度场计算定律和已获得的温度场计算热流量;热流量; 对于稳态、无内热源、第一类边界条件对于稳态、无内热源、第一类边界条件下的一维导热问题,可以不通过温度场下的一维导热问题,可以不通过温度场而直接获得热流量。而

34、直接获得热流量。此时,一维此时,一维FourierFourier定律:定律:d( )dtAtx 当当 (t)(t)时,时,xtAdd分离变量后积分,并注意到热流量分离变量后积分,并注意到热流量与与x x 无无关关( (稳态稳态) ),得,得1221)(ttdtttt21)()(21xxxAdxttxtxAtdd)()(22211121212121( )()( )()txttxttttdxt dtttAtttt 当当 随温度呈线性分布时,即随温度呈线性分布时,即 0 0atat,则,则2210tta实际上,不论实际上,不论 如何变化,只要能计算如何变化,只要能计算出平均导热系数,就可以利用前面讲

35、过的出平均导热系数,就可以利用前面讲过的所有定导热系数公式,只是需要将所有定导热系数公式,只是需要将 换成换成平均导热系数。平均导热系数。2-4 通过肋片的导热通过肋片的导热一一 基本概念基本概念 1 、肋片:、肋片:指依附于基础表面上的扩展表面指依附于基础表面上的扩展表面 2 、常见肋片的结构:、常见肋片的结构:针肋针肋 直肋直肋 环肋环肋 大大套片套片 3 、肋片导热的作用及特点、肋片导热的作用及特点 1 1 )作用:)作用:增大对流换热面积及辐射散热增大对流换热面积及辐射散热面面 , , 以强化换热以强化换热 2 2 )特点:)特点:在肋片伸展的方向上有表面的对在肋片伸展的方向上有表面的

36、对流换热及辐射散热,流换热及辐射散热, 肋片中沿导热热流传递肋片中沿导热热流传递的方向上热流量是不断变化的。即:的方向上热流量是不断变化的。即: const const 。 4 、分析肋片导热解决的问题、分析肋片导热解决的问题 一是:确定肋片的温度沿导热热流传递一是:确定肋片的温度沿导热热流传递的方向是如何变化的?的方向是如何变化的? 二是:确定通过肋片的散热热流量有多二是:确定通过肋片的散热热流量有多少?少? 1 通过等截面直肋的导热通过等截面直肋的导热已知:已知:矩形直肋矩形直肋肋根温度为肋根温度为t t0 0,且且t t0 0 t t 肋片与环境的表肋片与环境的表面传热系数为面传热系数为

37、 h h. . ,h h和和A Ac c均保持均保持不变不变求:求:温度场温度场 t t 和热流量和热流量 分析:分析:假设假设 1 1 )肋片在垂直于纸面方向)肋片在垂直于纸面方向 ( ( 即深度方向即深度方向 ) ) 很长,不考虑温度沿该方向的变化,因此取单位很长,不考虑温度沿该方向的变化,因此取单位长度分析;长度分析; 2 2 )材料导热系数)材料导热系数 及表面传热系数及表面传热系数 h h 均为常数,沿肋高方向肋片横截面积均为常数,沿肋高方向肋片横截面积 Ac Ac 不变;不变; 3 3 )表面上的换热热阻)表面上的换热热阻 1/h 1/h ,远大于,远大于肋片的导热热阻肋片的导热热阻 / / ,即肋片上任意截面上的,即肋片上任意截面上的温度均匀不变;温度均匀不变; 4 4 )肋片顶端视为绝热,即)肋片顶端视为绝热,即 dt/dx=0 dt/dx=0 ; 在上述假设条件下,把复杂的肋片导热在上述假设条件下,把复杂的肋片导热问题转化为一维稳态导热如图(问题转化为一维稳态导热如图(b b)所示并)所示并将沿程散热量将沿程散热量 视为负

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论