角形专题训练五三种特殊的等腰三角形的运用练习新版华东师大版0705152【含解析】_第1页
角形专题训练五三种特殊的等腰三角形的运用练习新版华东师大版0705152【含解析】_第2页
角形专题训练五三种特殊的等腰三角形的运用练习新版华东师大版0705152【含解析】_第3页
角形专题训练五三种特殊的等腰三角形的运用练习新版华东师大版0705152【含解析】_第4页
角形专题训练五三种特殊的等腰三角形的运用练习新版华东师大版0705152【含解析】_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题练习五三种特殊的等腰三角形的运用有三种等腰三角形比拟特殊:等腰直角三角形、等边三角形和含36角的等腰三角形.下面分类进行练习,帮助同学们进一步掌握这些特殊的等腰三角形的性质和判定.?类型一 等腰直角三角形定义:有一个角是直角的等腰三角形叫做等腰直角三角形.性质:1两条直角边相等;2顶角是90 ,底角是45 .判定:利用定义.1 .如图 5 ZT 1, ABC4ADE都是等腰三角形,且/ BAG= Z DAE= 90 ,点 B, C, D在同一条直线上.求证:BD= CE.图 5-ZT-12 .如图 5-ZT-2,在 ABC 中,AB= AC, D 是 BC 的中点,BEX AC 垂足为 E

2、, / ABE 的平分线交AD于点F.判断 DBF的形状,并证实你的结论.图 5-ZT- 23 .如图 5-ZT-3,在 RtABC中,/ BAC= 90 , AC= 2AB, D是 AC的中点.将一块锐 角为45.的直角三角尺ADE如下图的方式放置,使三角尺斜边的两个端点分别与A, D重合,连结BE, EC.试猜测线段BE和EC的数量及位置关系,并证实你的猜测.图 5-ZT- 3类型二等边三角形定义:三边都相等的三角形叫做等边三角形.性质:1三边都相等;2三个角都是60 .判定:1定义;2三个角都相等的三角形是等边三角形;3有一个角是60的等腰三角形是等边三角形.A图 5-ZT- 44 .如

3、图5-ZT-4, l / m等边三角形 ABC的顶点B在直线 m上,/ 1 = 20 ,那么/2 的度数为A. 60B. 45C. 40D, 305.如图 5ZT 5,在4ABC中,AB= AC, D, E是4ABC内两点,AD平分/ BAC / EBC =Z E= 60 .假设 BE= 6 cm DE= 2 c3 求 BC的长.Ayc图 5-ZT- 56 .如图5-ZT-6, B是AC上一点, AB/口 ADCE都是等边三角形,求证:AC= BE.图 5-ZT-67 .如图5-ZT-7, ABC是等边三角形,E是BC边上任意一点,/ AE已60 , EF交 ABC的外角/ ACD的平分线于点

4、 F.求证:AE= EF.图 5-ZT- 7?类型三有一角是36.的等腰三角形有一角是36.的等腰三角形包括两种情况:1顶角是36.的等腰三角形,此时底角是72.; 2底角是36.的等腰三角形,此时顶角是108.这两类等腰三角形具有一些共性.8 .如图5-ZT- 8,过正五边形 ABCDE勺顶点A作直线l /BE,那么/I的度数为A. 30B. 36C. 38D, 45图 5-ZT- 8图 5-ZT- 9.如图5-ZT- 9,在等腰三角形 ABC中,AB= AC, / A= 36 , BD AC于点D,那么/ CBD10 .如图 5 ZT 10,在ABC中,AB= AC, CD平分/ ACB

5、/ A= 36 ,贝U/ BDC的度 数为.A 办内图5 ZT10图 5-ZTT- 1111 .如图 5ZT11 所示,在 ABC 中,AB= AC, D为 BC上一点,且 AB= BD, AD= DC 那么/BAG= .12 .如图5-ZT- 12,在 ABC中,AB= AC, / A= 36 ,称满足此条件的三角形为黄金 等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形的个数均不包括4 ABC)(1)在图中画1条线段,使图中有 2个等腰三角形,并直接写出这 2个等腰三角形的 顶角度数分别是 度和 度;(2)在图中画2条线段,使图中有 4个等腰三角形;(3)继续按以

6、上操作发现:在图中画 n条线段,使图中有 2n个等腰三角形,其中有 个黄金等腰三角形.图 5-ZT- 12详解详析1 .证实: ABCF口 ADEB是等腰直角三角形,. AD= AE AB= AC . / EAC= 90 +Z CAD / DAB= 90 +Z CAD/ DAB= / EAC在 ADBF口 AEO43,. AD= AE, / DAB= / EAC AB= AC, ADB AECS.A.S.), . BD= CE2 .解: DB比等腰直角三角形.证实:AB= AC D是BC的中点,. ADL BC ADW / BAC. BF平分/ ABE AC BE _ 1, _ 1,一., .

7、Z DFB= / DABF / ABF=万(/ BA& / ABE = -(180 -/ AEB = 45 ./ DBF= 90 -Z DFB= 45 ,. DB= DF,DBF等腰直角三角形.3 .解:数量关系: BE= EC位置关系:BEL EC证实:. AE比等腰直角三角形, .Z AED= 90 , / EA氏 Z EDA= 45 , AE= DE / BAC= 90 , ./EAB= / EADF / BAC 45 + 90 = 135 , Z EDC= 180 -Z EDA= 180 -45 =/ EAB= / EDC.D是AC的中点,. AC= 2CD又. AC= 2AB.AB=

8、 CDEA望 EDCEB= EC 且/ AEB= / DEC ./BEC= / BEDF / DEC= / BEDF / AEB= / AED= 90 ,即 BEL EC4 . C _八一 -5 .解:延长 AD交BC于点M 由AB= AC A叶分/ BACH导AML BC B阵MC= 2BC延长ED交BC于点N,那么4 EBN等边三角形,故 EN= BN= BE= 6,. DN= 62=4.过点 D作 DF/ BE 那么/ DFN= / EBC= 60 , / FDN= / E= 60 ,. DFNK1等边三角形,1 1 八 .MN= gFN= gDN= 2,BM= 62= 4, BC=2B

9、M=8.6 .证实:. ABD DCETB是等边三角形,/ADB= Z CDE= 60 , AD= BD CD= DE/ ADBF / BDC= / BDG- / CDE即/ ADC= / BDE . ADC BDE . AC=BE7 .证实:如图,在 AB上截取AG= CE连结EG.ABB等边三角形,.AB= BC / B= Z ACB= 60 ,贝U BG= BE . BEO等边三角形, ./ BGE= 60 , ./ AGE= 120 . CF平分/ ACD,一 1. ,一 ./ACF= 2180 /ACB=60 , ./ ECF= 120 ,.-.Z AGE= / ECF / AEG= / B+ / GAE= / AE4 / CEF 且/ AEF= / B= 60 , ./ GAE= / CEF又 AG= EC. .AG摩 ECFA.S.A.,.AE= EF8. B9. 1810. 7211. 10812. 解:1如图所示画图不唯一.空格处分别填108, 36.提示:当 AE= BE时,/ A= Z ABE= 36 ,贝U/ AEB= 108 , /

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论