




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(Measure Phase) Process Variation Process Capability Specification, Process and Control Limits Process Potential vs Process Performance Short-Term vs Long-Term Process Capability Process Capability for Non-Normal Data Cycle-Time(Exponential Distribution) Reject Rate(Binomial Distribution) Defect Rat
2、e(Poisson Distribution)Process Variation is the inevitable differences among individual measurements or units produced by a process.Sources of Variationwithin unit(positional variation)between units(unit-unit variation)between lots(lot-lot variation)between lines(line-line variation)across time(time
3、-time variation)measurement error(repeatability & reproducibility)Inherent or Natural VariationDue to the cumulative effect of many small unavoidable causesA process operating with only chance causes of variation present is said to be “in statistical control” Special or Assignable VariationMay b
4、e due to a) improperly adjusted machine b) operator error c) defective raw materialA process operating in the presence of assignable causes of variation is said to be “out-of-control”Process Capability is the inherent reproducibility of a processs output. It measures how well the process is currentl
5、y behaving with respect to the output specifications. It refers to the uniformity of the process.Capability is often thought of in terms of the proportion of output that will be within product specification tolerances. The frequency of defectives produced may be measured ina) percentage (%)b) parts
6、per million (ppm)c) parts per billion (ppb)Process Capability studies can indicate the consistency of the process output indicate the degree to which the output meets specifications be used for comparison with another process or competitora)b)c)a) Process is highly capableb) Process is marginally ca
7、pablec) Process is not capableSpecification Limits (LSL and USL) created by design engineering in response to customer requirements to specify the tolerance for a products characteristicProcess Limits (LPL and UPL)measures the variation of a processthe natural 6 limits of the measured characteristic
8、Control Limits (LCL and UCL)measures the variation of a sample statistic (mean, variance, proportion, etc)Distribution of Individual ValuesDistribution of Sample AveragesTwo measures of process capability Process Potential Cp Process Performance Cpu Cpl CpkThe Cp index assesses whether the natural t
9、olerance (6) of a process is within the specification limits.6LSLUSLToleranceNaturalTolerancegEngineerinCpA Cp of 1.0 indicates that a process is judged to be “capable”, i.e. if the process is centered within its engineering tolerance, 0.27% of parts produced will be beyond specification limits. Cp
10、Reject Rate1.000.270 %1.330.007 %1.506.8 ppm2.002.0 ppba)b)c)a) Process is highly capable (Cp2)b) Process is capable (Cp=1 to 2)c) Process is not capable (Cp1.5)b) Process is capable (Cpk=1 to 1.5)c) Process is not capable (Cpk1)a)Cp = 2Cpk = 2b)Cp = 2Cpk = 1c)Cp = 2Cpk 1Specification Limits:4 to 16
11、 gMachineMeanStd Dev(a) 10 4(b) 10 2(c) 7 2(d) 13 1Determine the corresponding Cp and Cpk for each machine. 5 . 0464166LSLUSLCp 5 . 043410;431016Min3LSL;3USLMinCpk 0 . 1264166LSLUSLCp 0 . 123410;231016Min3LSL;3USLMinCpk 0 . 1264166LSLUSLCp 5 . 02347;23716Min3LSL;3USLMinCpk 0 . 2164166LSLUSLCp 0 . 11
12、3413;131316Min3LSL;3USLMinCpkFor a normally distributed characteristic, the defective rate F(x) may be estimated via the following:For characteristics with only one specification limit:a) LSL onlyb) USL only USLxPrLSLxPrxFUSL1LSLUSLLSLZ1ZLSLUSL LSLZLSLxPrxF USLZ1USLxPrxFSpecification Limits:4 to 16
13、gMachineMeanStd Dev(a) 10 4(b) 10 2(c) 7 2(d) 13 1Determine the defective rate for each machine.Mean Std Dev ZLSL ZUSL F(xUSL) F(x) 10 4 -1.51.5 66,807 66,807133,614 10 2 -3.03.0 1,350 1,350 2,700 7 2 -1.54.5 66,807 3 66,811 13 1 -9.03.0 0 1,350 1,350Lower Spec Limit = 4 gUpper Spec Limit = 16 g(a)
14、Poor Process Potential(b) Poor Process PerformanceLSLUSLLSLUSLExperimental Design to reduce variationExperimental Design to center mean to reduce variation Process Potential Index (Cp) Cpk 1.0 1.2 1.4 1.6 1.8 2.0 1.02,699.9 1,363.3 1,350.0 1,350.0 1,350.0 1,350.0 1.2 318.3 159.9 159.1 159.1 159.1 1.
15、4 26.7 13.4 13.4 13.4 1.6 1.6 0.8 0.8 1.8 0.1 0.0 2.0 0.0Defective Rate (measured in dppm) is dependent on the actual combination of Cp and Cpk.a)Cp = 2Cpk = 2b)Cp = 2Cpk = 1c)Cp = 2Cpk USLPPM USLPPM USLPPM USLPPM USLPPM LSLPpkPPLPPUPpScaleShapeSample NMeanLSLTargetUSL122970.80122970.80 * 75000.00 7
16、5000.00 *0.39 *0.39 *3.341.004003.34 * *7.00Expected LT PerformanceObserved LT PerformanceOverall (LT) CapabilityProcess DataStat Quality Tools Capability Sixpack (Weibull)4003002001000241680Individual and MR ChartObser.Individual ValueMean=3.34UCL=10.46LCL=-3.779241680Mov.RangeR=2.677UCL=8.746LCL=0
17、400390380Last 25 Observations9630Observation NumberValues7Overall (LT)Shape: 1.00Scale: 3.34Pp: *Ppk: 0.39Capability PlotProcess ToleranceSpecificationsIIII10.001.000.100.01Weibull Prob Plot20100Capability HistogramProcess Capability for Complaint ClosureFor a Normal Distribution, the proportion of
18、parts produced beyond a specification limit is )Z(F1USLZPr1USLZPrUSLXPrReject RateThus, for every reject rate there is an accompanying Z-Score, whereRecall thatHence3NSLPpkLimitSpecScoreZ3ScoreZPpkEstimation of Ppk for Reject Rate Determine the long-term reject rate (p) Determine the inverse cumulat
19、ive probability for p,using Calc Probability Distribution Normal Z-Score is the magnitude of the returned value Ppk is one-third of the Z-ScoreA sales manager plans to assess the process capability of his telephone sales departments handling of incoming calls. The following data was collected over a
20、 period of 20 days: number of incoming calls per day number of unanswered calls per daysStat Quality Tools Capability Analysis (Binomial)201000.260.250.240.230.220.210.200.19Sample NumberProportionP=0.2264UCL=0.2555LCL=0.1973201023.522.521.5Sample Number%Defective2624222020501950185026252423222120%D
21、efectiveSample SizeProcess Capability for Telephone SalesSummary StatsCumulative %DefectiveDist of %DefectiveP ChartRate of Defectives(denotes 95% C.I.)Average P:%Defective:Target:PPM Def.:Process Z:0.22642722.64302264270.751(0.2222, 0.2307)(22.22, 23.07)(222241, 230654)(0.737, 0.765)Ppk = 0.25Other
22、 applications, approximating a Poisson Distribution : error rates particle count chemical concentrationEstimation of Ytp for Defect Rate Define size of an inspection unit Determine the long-term defects per unit (DPU)DPU= Total Defects Total Units Determine the throughput yield (Ytp)Ytp= expDPUEstim
23、ation of Sigma-Capability for Defect Rate Determine the opportunities per unit Determine the long-term defects per opportunity (d)d= defects per unit opportunities per unit Determine the inverse cumulative probability for d,using Calc Probability Distribution Normal Z-Score is the magnitude of the r
24、eturned value Sigma-Capability = Z-Score + 1.5The process manager for a wire manufacturer is concerned about the effectiveness of the wire insulation process. Random lengths of electrical wiring are taken and tested for weak spots in their insulation by means of a test voltage. The number of weak sp
25、ots and the length of each piece of wire are recorded. Stat Quality Tools Capability Analysis (Poisson)10090807060504030201000.080.070.060.050.040.030.020.010.00Sample NumberSample CountU=0.02652UCL=0.06904LCL=01009080706050403020100.0300.0250.0200.015Sample NumberDPU0.0750.0500.0250.000Target150140
26、1301201101000.080.070.060.050.040.030.020.010.00DPUSample SizeProcess Capability for Wire InsulationSummary StatsCumulative DPUDist of DPUU ChartDefect Rate(denotes 95% C.I.)Mean DPU:Min DPU:Max DPU:Targ DPU:0.026519400.07534250(0.0237309, 0.0295455)Defects per Unit = 0.0265194Throughput Yield = exp
27、DPU = exp0.0265194 = 0.9738c.f. First-Time Yield = 2 / 100 = 0.02150140130120110100LengthBoxplot of LengthDefine1 Inspection Unit= 125 unit length of wirei.e.Units= Length 125Stat Quality Tools Capability Analysis (Poisson)10090807060504030201001050Sample NumberSample CountU=3.315UCL=8.630LCL=010090
28、80706050403020103.53.02.52.0Sample NumberDPU9630Target1.21.11.00.90.8109876543210DPUSample SizeProcess Capability for Wire InsulationSummary StatsCumulative DPUDist of DPUU ChartDefect Rate(denotes 95% C.I.)Mean DPU:Min DPU:Max DPU:Targ DPU:3.3149309.417810(2.96637, 3.69319)Defects per Unit = 3.3149
29、3Throughput Yield = expDPU = exp3.31493 = 0.0363c.f. First-Time Yield = 2 / 100 = 0.0210090807060504030201001050Sample NumberSample CountU=3.315UCL=8.630LCL=01009080706050403020103.53.02.52.0Sample NumberDPU9630Target1.21.11.00.90.8109876543210DPUSample SizeProcess Capability for Wire InsulationSummary StatsCumulative DPUDist of DPUU ChartDefect Rate(denotes 95% C.I.)Mea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤炭安全管理人员考试试题试题及答案
- 临床医学检验技术(师):临床检验基础
- 2025年专升本艺术概论考试模拟卷(艺术理论前沿热点知识问答与解析)含答案
- 海洋空间资源优化配置
- 老王P课件特点介绍
- 老年人照护职业培训课件
- 2025年八角行业分析报告及未来五至十年行业发展报告
- 餐饮店面租赁及品牌推广合同
- 车抵押贷款纠纷处理合同
- 水利泵站工程信息化建设与运维合同范本
- MH-T 5078.4-2024 运输机场建设工程资料管理规程 第4部分:目视助航设施工程施工资料
- 打击非法行医非法采供血和规范医疗机构执业行为
- 水处理反渗透设备日常维护保养点检记录表
- 档案整理及数字化服务方案
- 《讲师技能培训》课件
- 设备日常点检表
- 土力学与地基基础(课件)
- 青岛版二年级数学下册(六三制)全册课件【完整版】
- (完整版)初中生物实验报告单
- 2023年医技类-超声医学(副高)考试历年真题集锦附答案
- 复合不定代词
评论
0/150
提交评论