下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课时作业A组基础巩固1把标有1,2的两张卡片随机地分给甲、乙;把标有3,4的两张卡片随机地分给丙、丁,每人一张,事件“甲得1号纸片”与“丙得4号纸片”是()A互斥但非对立事件B对立事件C相互独立事件 D以上答案都不对解析:相互独立的两个事件彼此没有影响,可以同时发生,因此它们不可能互斥故选C.答案:C2两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A. B.C. D.解析:设“两个零件中恰有一个一等品”为事件A,因事件相互独立,所以P(A)××.答案:B3设两个独立事件A和B都不发生的概率为
2、,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A.B.C. D.解析:由P(A)P(B)得P(A)P()P(B)·P(),即P(A)1P(B)P(B)1P(A),P(A)P(B)又P( ),P()P().P(A).答案:D4在如图所示的电路图中,开关a,b,c闭合与断开的概率都是,且是相互独立的,则灯亮的概率是()A. B.C. D.解析:设开关a,b,c闭合的事件分别为A,B,C,则灯亮这一事件EABCABAC,且A,B,C相互独立,ABC,AB,AC互斥,所以P(E)P(ABCABAC)P(ABC)P(AB)P(AC)P(A)P(B)P(C)P
3、(A)P(B)P()P(A)P()P(C)××××××.答案:B5甲、乙两名学生通过某种听力测试的概率分别为和,两人同时参加测试,其中有且只有一人能通过的概率是()A. B.C. D1解析:设事件A表示“甲通过听力测试”,事件B表示“乙通过听力测试”依题意知,事件A和B相互独立,且P(A),P(B).记“有且只有一人通过听力测试”为事件C,则C(A)(B),且A和B互斥故P(C)P(A)(B)P(A)P(B)P(A)P()P()P(B)××.答案:C6某条道路的A,B,C三处设有交通灯,这三盏灯在一分钟内平均开放绿
4、灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是_解析:P××.答案:7某天上午,李明要参加“青年文明号”活动为了准时起床,他用甲、乙两个闹钟叫醒自己假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是_解析:×0.200.98.答案:8如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是_解析:左边圆盘指针落在奇数区域的概率为,右边圆盘指针落在奇数区域的概率为,所以两个指针同时落在奇数区域的概率为×.答案:9从一副除去大小
5、王的扑克牌(52张)中任取一张,设事件A为“抽得K”,事件B为“抽得红牌”,事件A与B是否相互独立?是否互斥?是否对立?为什么?解析:由于事件A为“抽得K”,事件B为“抽得红牌”,故抽到的红牌中可能抽到红桃K或方块K,故事件A与B有可能同时发生,显然它们不是互斥或对立事件下面判断它们是否相互独立:“抽得K”的概率为P(A),“抽得红牌”的概率为P(B),“既是K又是红牌”的概率为P(AB).因为×,所以P(AB)P(A)P(B)因此A与B相互独立10某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为.(1)求恰有一名同学当选的概率;(2)求至多有两人当选的
6、概率解析:设甲、乙、丙当选的事件分别为A、B、C,则P(A),P(B),P(C).(1)易知事件A、B、C相互独立,所以恰有一名同学当选的概率为P(A)P(B)P(C)P(A)P()P()P()P(B)P()P()P()P(C)××××××.(2)至多有两人当选的概率为1P(ABC)1P(A)P(B)P(C)1××.B组能力提升1国庆节放假,甲,乙,丙去北京旅游的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为()A. B.C. D.解析:因甲,乙,丙去北京旅游的概率分别为,
7、.因此,他们不去北京旅游的概率分别为,所以,至少有1人去北京旅游的概率为P1××.答案:B2从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是且从两个袋中摸球相互之间不受影响,从两袋中各摸出一个球,则等于()A2个球不都是红球的概率B2个球都是红球的概率C至少有1个红球的概率D2个球中恰有1个红球的概率解析:分别记从甲、乙袋中摸出一个红球为事件A,B,则P (A),P(B),由于A,B相互独立,所以1P()P()1×.根据互斥事件可知C正确答案:C3甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球从每袋中任取一个球,则取得同色球的概率为_解析:设从甲
8、袋中任取一个球,事件A为“取得白球”,则事件为“取得红球”,从乙袋中任取一个球,事件B为“取得白球”,则事件为“取得红球”事件A与B相互独立,事件与相互独立从每袋中任取一个球,取得同色球的概率为P(AB)()P(AB)P()P(A)P(B)P()P()××.答案:4设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05.甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.则求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为_,_,_.解析:记“机器甲需要照顾”为事件A,“机器乙需要照顾”为事件B,“机器丙需要照
9、顾”为事件C,由题意可知A,B,C是相互独立事件由题意可知得所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.答案:5某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列解析:设Ai(i0,1,2,3)表示摸
10、到i个红球,Bj(j0,1)表示摸到j个蓝球,则Ai与Bj独立(1)恰好摸到1个红球的概率为P(A1).(2)X的所有可能值为:0,10,50,200,且P(X200)P(A3B1)P(A3)P(B1)·;P(X50)P(A3B0)P(A3)P(B0)·,P(X10)P(A2B1)P(A2)P(B1)·,P(X0)1.综上可知,获奖金额X的分布列为X01050200P6.某公司招聘员工,指定三门考试课程,有两种考试方案:方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响(1)求该应聘者用方案一通过的概率;(2)求该应聘者用方案二通过的概率解析:记“应聘者对三门考试及格”分别为事件A,B,C.则P(A)0.5,P(B)0.6,P(C)0.9.(1)该应聘者用方案一通过的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 奶瓶产业运行及前景预测报告
- 体育品牌篮球赞助方案
- 基层医疗机构服务能力提升方案
- 半导体芯片制造设备产业规划专项研究报告
- 农产品加工厂班组创建方案
- 铁路桥梁加固与维护方案
- 航空工程应急救援方案
- 城市地下管线管道沟槽支护施工方案
- 节庆活动场地租赁合同注意事项
- 城市更新基坑土方开挖专项方案
- ESTIC-AU40使用说明书(中文100版)(共138页)
- 河北省2012土建定额说明及计算规则(含定额总说明)解读
- Prolog语言(耐心看完-你就入门了)
- 保霸线外加电流深井阳极地床阴极保护工程施工方案
- 蓝色商务大气感恩同行集团公司20周年庆典PPT模板
- 恒温箱PLC控制系统毕业设计
- 雍琦版 《法律逻辑学》课后习题答案
- 176033山西《装饰工程预算定额》定额说明及计算规则
- 新技术、新材料、新工艺”试点输电线路建设的通知国家电网
- 水泵试运转记录表
- 箱式变电站交接试验报告
评论
0/150
提交评论