




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.6 1.6 微积分基本定理微积分基本定理三三: : 定积分的基本性质定积分的基本性质 性质性质1. 1. dx)x(g)x(fba babadx)x(gdx)x(f性质性质2. 2. badx)x(kf badx)x(fk三三: : 定积分的基本性质定积分的基本性质 定积分关于积分区间具有定积分关于积分区间具有可加性可加性 bccabadx)x(fdx)x(fdx)x(f 性质性质3. 3. 2121 ccbccabadx)x(fdx)x(fdx)x(fdx)x(fOx yab yf (x) 性质性质 3 不论不论a,b,c的相对位置如何都有的相对位置如何都有ab y=f(x)baf (x
2、)dx f (x)dxf (x)dx。 f (x)dx f (x)dxf (x)dx。 f (x)dx f (x)dxf (x)dx。 cOx ybaf (x)dx f (x)dxf (x)dx。 1. 1. 由定积分的定义可以计算由定积分的定义可以计算 , , 但但比较麻烦比较麻烦( (四步曲四步曲),),有没有更加简便有效的有没有更加简便有效的方法求定积分呢方法求定积分呢? ?12013x dx 一、引入一、引入1205(2)3tdt22022(2)3tdt22083x dx 12( )( )inSs bs assss( )s b()s a探究探究: :如图如图, ,一个作变速直线运动的物
3、体的运动规律是一个作变速直线运动的物体的运动规律是s=s(t),s=s(t),由导数的概念可知由导数的概念可知, ,它在任意时刻它在任意时刻t t的速度的速度v(t)=s(t).v(t)=s(t).设这个设这个物体在时间段物体在时间段a,ba,b内的位移为内的位移为S,S,你能分别用你能分别用s(t),v(t)s(t),v(t)表示表示S S吗吗? ?11()()iiibaSt s tv tn1211( )nniniiibaSssssSv tn11limlim( )( )( )( )nnbibniaanibaSSv tv ts t dts bstnad由定积分的定义得由定积分的定义得( )(
4、)( )( )babas t dSv t dtts bs a定理定理 (微积分基本定理)(微积分基本定理)二、牛顿二、牛顿莱布尼茨公式莱布尼茨公式( )|( )( )( )bbaaf x dxF bxFFa或或(F(x)叫 做 f(x)的 原 函 数 , f(x)就 是 F(x)的 导 函 数 ) 如果如果f(x)f(x)是区间是区间a,ba,b上的连续函数上的连续函数, ,并且并且F F(x)=f(x),(x)=f(x),则则baf x dxF bF a( )( )( )例例1 1 计算下列定积分计算下列定积分 2 21 11 1(1)dx(1)dxx x解解()()1 1(lnx) =(l
5、nx) =x xlnlnbab bb ba aa a1 1公公式式1 1: : d dx x = =l ln nx x| |x x3 31 1(2) 2xdx(2) 2xdx3221|3183 32 21 1(2) 2xdx = x(2) 2xdx = x2 21 1=lnx| =ln2-ln1=ln2=lnx| =ln2-ln1=ln22 21 11 1dxdxx x( )( )|( )( )bbaaf x dxF xF bF a找出找出f(x)的原的原函数是关健函数是关健 练习:练习: 1 10 01 10 01 13 30 02 23 3-1-1(1) 1dx = _(1) 1dx =
6、_(2) xdx = _(2) xdx = _(3) x dx = _(3) x dx = _(4)x dx = _(4)x dx = _nxn+1n+1b bb ba aa ax x公公式式2: dx =|2: dx =|n+1n+111/21/415/4复习复习: : 定积分的基本性质定积分的基本性质 性质性质1. dx)x(g)x(fba babadx)x(gdx)x(f性质性质2. badx)x(kf badx)x(fk例例 计算下列定积分计算下列定积分 原式原式33221111()dxdxdxdxxx3 33 32 22 21 11 1= =3 3x x3 3x x解解:3 32 2
7、2 21 11 1(3x -)dx(3x -)dxx x211)xx 3232(x ) = 3x , (x ) = 3x , (3311176(31 )()313x3 333 331111= x |= x |( )( )|( )( )bbaaf x dxF xF bF a 练习:练习: _(1)xe1 12 20 02 22 21 12 22 2-1-12 21 1(1) (-3t +2)dt(1) (-3t +2)dt1 1(2) (x+) dx = _(2) (x+) dx = _x x(3) (3x +2x-1) dx = _(3) (3x +2x-1) dx = _(4)dx = _(
8、4)dx = _23/619e2-e+1( )( )|( )( )bbaaf x dxF xF bF a例例 计算下列定积分计算下列定积分 20 0(2)cosxdx(2)cosxdx0 0( (1 1) )s si in nx xd dx x解解(1)(s )sinco xx 00sin(s )|cos( cos0)1 12xdxco x 思考思考:( )a的几何意义是什么0 0s si in nx xd dx x? ?22( )( )bc0 00 0sinxdx = _sinxdx = _sinxdx = _sinxdx = _0120 0(2)cosxdx(2)cosxdx2200cossin|sinsin01 012xdxx (sin )cosxx解解思考思考:2( )a的几何意义是什么0 0c co os sx xd dx x? ?2( )( )bc0 00 0cosxdx = _cosxdx = _cosxdx = _cosxdx = _00微积分基本公式微积分基本公式)()()(aFbFdxxfba 三、小结三、小结b bb ba a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳学院《物联网安全技术实验》2023-2024学年第二学期期末试卷
- 2025至2031年中国礼品杯套装行业投资前景及策略咨询研究报告
- 甘肃省庆阳市第九中学2023-2024学年中考适应性考试数学试题含解析
- 医疗互联网现状及发展趋势
- 25年公司、项目部、各个班组安全培训考试试题带下载答案
- 2025年新员工入职前安全培训考试试题答案高清
- 25年企业主要负责人安全培训考试试题附答案【研优卷】
- 2024-2025新员工岗前安全培训考试试题及答案高清版
- 2025厂里安全培训考试试题有解析答案
- 2025公司、项目部、各个班组安全培训考试试题及完整答案(历年真题)
- 老母亲赡养协议书范本
- 4.3 诚实守信(课件)-2024-2025学年八年级道德与法治上册 (统编版2024)
- 工地会议室使用管理制度
- 2024年东南亚智能联网电视(Connected TV)市场深度研究及预测报告
- 工程伦理智慧树知到期末考试答案章节答案2024年武汉科技大学
- 2022年版 义务教育《数学》课程标准
- 2024年高考政治必修四 《哲学与文化》(思维导图+核心考点+易混易错)
- MOOC 基于计算思维的Python程序设计-河北工程大学 中国大学慕课答案
- JJG 621-2012 液压千斤顶行业标准
- JTG∕T F30-2014 公路水泥混凝土路面施工技术细则
- 施工工地环保知识培训课件
评论
0/150
提交评论