向量的内积、长度及正交性ppt课件_第1页
向量的内积、长度及正交性ppt课件_第2页
向量的内积、长度及正交性ppt课件_第3页
向量的内积、长度及正交性ppt课件_第4页
向量的内积、长度及正交性ppt课件_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 向量的内积、长度及正交性 本章主要讨论方阵的特征值与特征向量、方阵的类似对角化和二次型的化简问题 其中涉及向量的内积、长度及正交等知识 本节先引见这些知识 上页下页铃终了前往首页上页下页铃结束返回首页v向量的内积v 设有n维向量x(x1 x2 xn)T y(y1 y2 yn)T 令vx yx1y1x2y2 xnynvx y称为向量x与y的内积 阐明 内积是两个向量之间的一种运算 其结果是一个实数 用矩阵记号表示 当x与y都是列向量时 有x yxTy下页上页下页铃结束返回首页v向量的内积v 设有n维向量x(x1 x2 xn)T y(y1 y2 yn)T 令vx yx1y1x2y2 xnynvx

2、 y称为向量x与y的内积 v内积的性质v 设x y z为n维向量 为实数 那么 v (1)x yy x v (2)x yx y v (3)xy zx zy z v (4)当x0时 x x0 当x0时 x x0 v (5)x y2x xy y 施瓦茨不等式 下页上页下页铃结束返回首页v向量的长度 令 22221 ,|nxxx xxx |x|称为n维向量x的长度(或范数) v向量的长度的性质v 设x y为n维向量 为实数 那么 v (1)非负性 当x0时 |x|0 当x0时 |x|0 v (2)齐次性 |x|x| v (3)三角不等式 |xy|x|y| 下页上页下页铃结束返回首页v向量间的夹角|

3、,arccosyxyx称为n维向量x与y的夹角 当x0 y0时 当x y0时 称向量x与y正交 显然 假设x0 那么x与任何向量都正交 v定理1 v 假设n维向量a1 a2 ar是一组两两正交的非零向量 v那么a1 a2 ar线性无关 下页上页下页铃结束返回首页 例1 知3维向量空间R3中两个向量a1(1 1 1)T a2(1 2 1)T正交 试求一个非零向量a3使a1 a2 a3两两正交 解 设a3(x1 x2 x3)T 那么a3应满足a1Ta30 a2Ta30即a3应满足齐次线性方程组 00121111321xxx 取a3(1 0 1)T即合所求得根底解系(1 0 1)T 由 010101

4、 030111 121111rrA010101 030111 121111rrA010101 030111 121111rrA 下页上页下页铃结束返回首页注 当|x|1时 称x为单位向量 v规范正交基 v 设n维向量e1 e2 er是向量空间V(VRn)的一个基 假设e1 e2 er两两正交 且都是单位向量 那么称e1 e2 er是V的一个规范正交基 例如 向量组 是R4的一个规范正交基 0021211e 0021212e 2121003e 2121004e 下页上页下页铃结束返回首页v规范正交基 v 设n维向量e1 e2 er是向量空间V(VRn)的一个基 假设e1 e2 er两两正交 且都

5、是单位向量 那么称e1 e2 er是V的一个规范正交基 v向量在规范正交基中的坐标v 假设e1 e2 er是V的一个规范正交基 那么V中任一向量a应能由e1 e2 er线性表示 并且vaa e1e1a e2e2 a ererv 现实上 设a1e12e2 rer 那么eiTaieiTeii即ieiTa a ei 下页上页下页铃结束返回首页阐明 要找一组两两正交的单位向量e1 e2 er 使e1 e2 er与a1 a2 ar等价 这样一个问题 称为把a1 a2 ar这个基规范正交化 v施密特正交化方法v 设a1 a2 ar是向量空间V中的一个基 取向量组 下页上页下页铃结束返回首页v施密特正交化方

6、法v 设a1 a2 ar是向量空间V中的一个基 取向量组 容易验证b1 b2 br两两正交 且b1 b2 br与a1 a2 ar等价 把b1 b2 br单位化 即得V的一个规范正交基111|1bbe 222|1bbe rrrbbe|1 11ab 1112122 , ,bbbabab 111122221111 , , , , , , rrrrrrrrrbbbabbbbabbbbabab 下页上页下页铃结束返回首页 例2 设a1(1 2 1)T a2(1 3 1)T a3(4 1 0)T 试用施密特正交化过程把这组向量规范正交化 解 令b1a11113512164131 , ,1112122bbb

7、abab10121113512131014 , , , ,22221113133bbbabbbbabab再令 e1 e2 e3即为所求即为所求 12161|111bbe1113512164131 , ,1112122bbbabab 10121113512131014 , , , ,22221113133bbbabbbbabab 12161|111bbe12161|111bbe11131|222bbe11131|222bbe11131|222bbe10121|333bbe10121|333bbe 下页上页下页铃结束返回首页 例3 知a1(1 1 1)T 求一组非零向量a2 a3 使a1 a2 a

8、3两两正交 a2 a3应满足方程a 1Tx0 即x1x2x30 它的根底解系为1(1 0 1)T 2(0 1 1)T把根底解系正交化 即得所求 亦即取 解 10112 a 1212110121110 , ,1112122 a1212110121110 , ,1112122 a 下页上页下页铃结束返回首页v正交阵v 假设n阶矩阵A满足ATAE(即A1AT) 那么称A为正交矩阵 简称正交阵 方阵A为正交阵的充分必要条件是A的列(行)向量都是单位向量 且两两正交 n阶正交阵A的n个列(行)向量构成向量空间Rn的一个规范正交基 正交矩阵举例 2121000021212121212121212121P 下页上页下页铃结束返回首页v正交阵v 假设n阶矩阵A满足ATAE(即A1AT) 那么称A为正交矩阵 简称正交阵 v正交矩阵的性质v (1)假设A为正交阵 那么A1AT也是正交阵 且|A|1 v (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论