SPSS统计分析教程-多因素方差分析_第1页
SPSS统计分析教程-多因素方差分析_第2页
SPSS统计分析教程-多因素方差分析_第3页
SPSS统计分析教程-多因素方差分析_第4页
SPSS统计分析教程-多因素方差分析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、SPSS统计分析教程-多因素方差分析多因素方差分析是对一个变量是否受一个或多个因素或变量影响而进行的 方差分 析oSPSS调用“Univariate ”过程,检验不同水平组合之间因变量均数, 由于受不同因素 影响是否有差异的问题。在这个过程中可以分析每一个因素的 作用,也可以分析因素之间的 交互作用,以及分析协方差,以及各因素变量与 协变量之间的交互作用。该过程要求因变量 是从多元正态总体随机采样得来, 且总体中各单元的方差相同。 但也可以通过方差齐次性检 验选择均值比较结果。 因变量和协变量必须是数值型变量,协变量与因变量不彼此。因 素变量是分类 变量,可以是数值型也可以是长度不超过 8 的

2、字符型变量。固定因素变量 (Fixed Factor) 是反应处理的因素 ; 随机因素是随机地从总体中抽取的因素。 例子 研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表 5-7。分 析不同温度 和湿度对粘虫发育历期的影响是否存在着显著性差异。表 5-7 不同温度与不同湿度粘虫发育历期表 相对湿度( %)温度C 重复 1 2 3 4 100 25 91.2 95.0 93.8 93.0 27 87.6 84.7 81.2 82.429 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.3 80 25 93.2 89.3 95.1 95.527 85.8

3、 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.9 4025 100.2 103.3 98.3 103.8 27 90.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.731 73.6 73.2 76.4 72.5数据保存在“ DATA5 2.SAV'文件中,变量格式如图5-1。1)准备分析数据 在数据编辑窗口中输入数据。 建立因变量历期“历期”变 量,因素变量温度“ A”,湿度为“B'变量,重复变量“重复”。然后输入对 应的数值,如图 5-6 所示。或者打开已存 在的数据文件“

4、 DATA-52.SAV”。图5-6数据输入格式2 )启动分析过程 点击主菜单“ Analyze ”项,在下 拉菜单中点击“ General Lin ear Model ”项,在右拉 式菜单中点击“ Uni variate ” 项,系统打开单因变量多因素方差分析设置窗口如图 5-7。图 5-7 多因素方差分析窗口 3)设置分析变量 设置因变量: 在左边变量列表中选“历期”,用 向右拉按钮选入到“Depencbnt Variable :”框中。设置因素变量:在左边变量列表中选“ a”和“b”变量,用向右拉按钮移到“ FixedFactor(s): ”框中。可以选择多个因素变量。 由于内存容量的限

5、制, 选择的因素 水 平组合数 (单元数)应该尽量少。设置随机因素变量:在左边变量列表中选 “重 复”变量,用向右拉按钮移到 “到 Random Factor(s) ”框中。可以选择多个随机变量。设置协变量:如果需要去除某个变量对因素变量的影响, 可将这个变量移到 “Covariate(s) ”框中。设置权重变量:如果需要分析权重变量的影响,将权重变量移到“ WLS Weight ” 框中。4)选择分析模型在主对话框中单击“ Model ”按钮,打开“ Uni variateModel”对话框。见图5-8。图 5-8 “Univariate Model ” 定义分析模型对话框 在 Specif

6、y Model 栏 中,指定分析模型类型。 Full Factorial 选项 此项为系统默认的模型类型。该项选择建立全模 型。全模型包括所有因素变量的主效 应和所有的交互效应。例如有三个因素变 量,全模型包括三个因素变量的主效应、两两的交 互效应和三个因素的交互效 应。选择该项后无需进行进一步的操作,即可单击“ Continue ” 按钮返回主对 话框。此项是系统缺省项。 Custom选项建立自定义的分析模型。选择了“ Custom”后,原被屏蔽的“ Factors & Covariates ”、“ Model” 和“ Build Term(s) ”栏被激活。在“Factors &a

7、mp; Covariates ”框中自动列出可以 作为因素变量的变量名,其变量 名后面的括号中标有字母“ F”;和可以作为协变量的变量 名,其变量名后面的 括号中标有字母“ C”。这些变量都是由用户在主对话框中定义过的。根据表中列出的变量名建立模型,其方法如下:在“ Build Term(s) ”栏右面的有一向下箭头按钮(下拉按钮),单击该按钮 可以展开一小 菜单,在下拉菜单中用鼠标单击某一项,下拉菜单收回,选中的 交互类型占据矩形框。有如 下几项选择:Interaction 选中此项可以指定任意的交互效应;Main effects 选中此项可以指定主效应; All 2-way 指定所有 2

8、维交互效应; All 3-way 指定所有 3 维交互效应;-way 指定所有 4 维交互效应-way指定所有 5 维交互效应。 建立分析模型中的主效应:在“ Build Term(s) ”栏用下拉按钮选中主效应“ Main effects ”。在变量列表栏用鼠标键单击某一个单个的因素变量名, 该变量名背景将改变 颜色(一般变为蓝色),单击“ Build Term(s) ”栏中的右拉箭头按钮,该变量出 现在“ Model”框中。一个变量名占一行称为主效应项。 欲在模型中包括几个主效应项, 就进行几 次如上的操作。也可以在标有“ F”变量名中标记多个变量同时送到“ Model”框中。本例将“a”

9、和“b”变量作为主效应,按上面的方法选送到“ Model”框中。 建立模型中的交互项 要求在分析模型中包括哪些变量的交互效应, 可以 通过如下的操作建立交互项。例如,因素变量有“ a(F) ”和“ b(F) ”,建立它们之间的相互效应。选中 项。“Model”框中,模型增加了一个交互效应项:a*bSum of squares 栏分解 平方和的选择项进行调整。一般适用于:平衡的AN0VA模型,在这个模型中一阶交互 效应前指定主效应,二阶交互 效应前指定一阶交互效应,依次类推;多项 式回归模型。嵌套模型是指第一效 应嵌套在第二 效应里,第二效应嵌套在第三效应里,嵌套的形式可使用语句指AN0VA模型

10、、主因子 效应模型、回归模型、嵌套设计。Type III 项,是系统默认的处理方法。对其他任何效应均进行调整。它 的优势是把 所估计剩余常量也考虑到单元频数中。 对没 有缺失单元格的不平衡 模型也适用,一般适用于: Type I 、Type II 所列 的模型:没有空单元格的平 衡和不平衡模型。Type IV 顶,没有缺失单元的设计使用此方法对任何效应 F 计算平方和。 如果 F 不 包含在其他效应里, Type IV = Type IIIl = TypeII。如果 F 包含在其他效应里, Type IV 只对 F 的较高水平效应参数 作对比。一般适用于: Type I 、 Type lI 所

11、列模型; 没有空单元的平衡和不平衡模型。 Include intercept in model栏选项 系统默认选项。通常截距包括在模型中。如果能假设数据通过原点,可以不包括截距, 即不选择此项。5)选择比较方法 在主对话框中单击“ Contrasts ”按钮,打开“ Contrasts 比较设置对话框,如图 5-9 所示。如图 5-9 Contrasts 对比设置框 在“ Factors ”框中显示出所有在主对话 框中选中的因素变量。因素变量名后的括号中 是当前的比较方法。 选择因子 在“ Factors ”框中选择想要改变比较方法的因子,即鼠标单 击选中的因子。这一操作 使“ Change

12、Contrast ”栏中的各项被激活。 选择比较方法 单击“ Contrast ”参数框中的向下箭头, 展开比较方法表。 用鼠标单击选中的对照方 法。可供选择的对照方法有:Deviation ,除被忽略的水平外,比较预测变量或因素变量的每个水平的 效应。可以 选择“ Last ”(最后一个水平 ) 或 “First ”(第一个水平 )作为忽略 的水平。与参考水平 进行比较。选择“ Last ”或“ First ”作为参考水平。与其前面各 水平的平均效应进行比较。与 Helmert 对照 方法相反。Helmert,对预测变量或因素的效应,除最后一个以外,都与后续的各水 平的平均效 应相比较。水平

13、以外, 对每一水平都与它前面的水平进行比较。素水平的交 叉。第二级包括二次效应等。各水平彼此 的间隔被假设是均匀的。 修改比较方法 先按步骤选中因子变量,再选比较方法,然后单击“Change按钮,选中的(或改变 的)比较方法显示在步骤选中的因子变量后 面的括号中。 设置比较的参考类 在“ Referenee Category ”栏比较的参考类有两个, 只有选择了“ Deviation ”或 “Simple ”方法时才需要选择参考水平。 共有两种 可能的选择,最后一个水平“Last”选项和第一水平“ First ”项。系统默认的 参考水平是“ Last”。6)选择均值图 在主对话框中单击“ Pl

14、ot ”按钮, 打开“ Profile Plots ”对话 框,如图 5-10 所示。在该对话框中设置均值轮廓图。如图 5-10 “Profile Plots”对话框 均值轮廓图 (Profile Plots) 用于比 较边际均值。轮廓图是线图,图中每个点表明因变 量在因素变量每个水平上的 边际均值的估计值。如果指定了协变量,该均值则是经过协变量 调整的均值。 因变量做轮廓图的纵轴;一个因素变量做横轴。做单因素方差分析时,轮廓图表明该因素各水平的因变量均值。双因素方差分析时, 指定一个因素做横轴变量, 另一个因素变量的每个水平 产生不同 的线。如果是三因素方差分析,可以指定第三个因素变量,该因

15、素每 个水平产生一个轮廓图。双因素或多因素轮廓图中的相互平行的线表明在因素间无交互效应; 不平行 的线表明有交互 效应。Horlzontal Axis 横坐标框,选择选择“ Factors ”框中一个因素变量做 横坐标变 量。被选的变量名反向显示, 单击向右拉箭 头按钮, 将变量名送入相 应的横坐标轴框中。如果只想看该因素变量各水平的,因变量均值分布,单击“ Add按钮,将 所选因素变量移入下面的“ Plots ”框中。否 贝U,不点击“ Add'按钮,接着做 下步。Separate Lines 分线框。如果想看两个因素变量组合的各单元格中因变 量均值分 布,或想看两个因变量间是否存在

16、交互效应, 选择“ Factors ”框中 另一个因素变量,单击右拉按钮将变量名送入 “ Separate Lines ”框中。单击 “Add按钮,将自动生成 的图形表达式送入到“ Plots ”栏中。分线框中的变 量的每个水平将在图中是 一条线。图形表达式是用“ *”连接的两个因素变 量 名。按上述方法, 将其送入“ Separate Plot ”框中,单击 “Add按钮,将自动生 成的图形表达式送入到“ Plots ”栏中。图形表达式是 用“*'连接的三个因素 变量名。分图变量的每个 水平生成一张线图。“Remove按 钮,将其取消,再重新输入正确内容。在检查无误后, 按“ Con

17、tinue ”按钮确认, 返回到主对话框。 如果取消做的 设置单击“ Cancel ”按钮 7)选择多重比较 在主对话框中单击“ Post Hoc ”选项,打开“ Post Hoc Multiple Comparisons for Observed Means ”对话框,从“ Factor(s) ”框选择 变量,单击向右拉按钮,使被选变量进 入“Post Hoc test for ”框。本例子选 择了 “a” 和“ b”。然后选择多重比较方法。在对话框中选择多重比较方法。本例子选择了“ Dun car” 和 “ Tamha ne's T2”。8)选择保存运算值 图5-11 Save对话

18、框在主对话框中,单击“ Save”按 钮,打开“ Save”设置对话框,如图 5-11所示。通过 在对话框中的选择,可 以将所计算的预测值、残差和检测值作为新的变量保存在编辑数据文 件中。以 便于在其他统计分析中使用这些值。 Predicted Values 预测值 1. Unstsndardized ,非标准化预测值。2. Weighted,如果在主对话框中选择了 WLS变量,选中该复选项,将保存 加权非标准 化预测值。3. Standard error ,预测值标准误。 Diagno stics 诊断值 1. Cook 's distance , Cook 距离。2. Levera

19、ge values ,非中心化 Leverage 值。 Residuals 残差 1. Unstsndardized ,非标准化残差值,观测值与预测 值之差。2. Weighted,如果在主对话框中选择了 WLS变量,选中该复选项,将保存 加权非标准 化残差。3. Standardized ,标准化残差,又称 Pearson 残差。4. Studentized ,学生化残差。5. Deleted ,剔除残差,自变量值与校正预测值之差。 Save to New File 保存协方差矩阵 选中” Coefficient statistics”项,将参数协方差矩阵保存到一个新文件中。单击 “File

20、 ”按钮,打开相应的 对话框将文件保存。9)选择输出项 在主对话框中单击“ Options ”按钮, 打开“ Options ”输出 设置对话框,见图 5-12。图 5-12 “Options ”输出设置对话框 Estimated Marginal Means 估测 边际均值设置and Factor Interactions”框中列出“ ModeI”对话框中指定的效 应项,在该框中选定因素变量的各种效应项, 单击右拉按钮就将其复制到“ Display Meansfor ”框中。选择主效应,则产生 估计的边际均值表;选择二维交互效应 产生的估计 边际均值表实际上是典型的单元格均值表。选择三维交互

21、效应也是 单元格均值 表。main effects ”复选项,对主效应的边际均值进行组间的配 对比较。Confidence interval adjustment 参数框,进行多重组间比较。打开下 拉菜单,共 有三个选项:LSD(none)、Bonferroni 、Sidak. 。在“ Display ”栏中指定要求输出的统计量Descriptive statistics项,输出描述统计量:观测量的均值、标准差和每个单元 格中的观测量数。Estimates of effect size 项,效应量估计。选择此项,给出 n 2(eta-Square) 值。它反应了每个效应与每个参数估计值可以归于

22、 因素的总变异的大小。Observed power 复选项,选中此项给出在假设是基于观测值时各种检验假 设的功效。计算功效的显著性水平,系统默认的临界值 是 0.05。Parameter estimates 项。选择此项给出了各因素变量的模型参数估计、标 准误、 t 检验的 t 值、显著性概率和 95的置信区间。Contrast coefficient matrix项,显示协方差矩阵。Homogeneity test 项,方差齐次性检验。本例子选中该项。Spread vs.level plot 项,绘制观测量均值对标准差和观测量均值对方差 的图形。Residual plot 项,绘制残差图。给

23、出观测值、预测值散点图和观测量数目, 观测量 数目对标准化残差的散点图,加上正态和标准化 残差的正态概率图。Lack of fit项,检查变量和非变量间的关系是否被充分描述。General estimable function 项,可以根据一般估计函数自定义假设检验。对比系 数矩阵的行与一般估计函数是线性组合的。 Significance level 框设置 改变“ Confidence intervals ”框内多重 比较的显著性水平。10)提交执行 设置完成后,在多因素方差分析窗口框中点击“0K按钮,SPSS就会根据设置进行运 算,并将结算结果输出到SPSS结果输出窗口中。11)结果与分析 主要输出结果: 结果分析:方差不齐次性检验显著 表 5-8 方差齐次性检验表明:方差不齐次性显著, p<0.05 。方差分析:表 5-9 主效应方差分析表:在表的左上方标明研究的对象是粘虫历期。 偏差来源和偏差平方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论