变量的相关关系_第1页
变量的相关关系_第2页
变量的相关关系_第3页
变量的相关关系_第4页
变量的相关关系_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、变量的相关关系【学习目标】1 .明确两个变量具有相关关系的意义;2 .知道回归分析的意义;3 .知道回归直线、回归直线方程、线性回归分析的意义;4 .掌握对两个变量进行线性回归的方法和步骤,并能借助科学计算器确定实际问题中两个变量间的回归直线方程;【要点梳理】【高清课堂:变量的相关关系400458知识讲解1】要点一、变量之间的相关关系变量与变量之间存在着两种关系:一种是函数关系,另一种是相关关系。1 .函数关系函数关系是一种确定性关系,如y=kx+b,变量x取的每一个值,y都有唯一确定的值和它相对应。2 .相关关系变量间确定存在关系,但又不具备函数关系所要求的确定性相关关系分为两种:正相关和负

2、相关要点诠释:对相关关系的理解应当注意以下几点:(1)相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅t能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素一一年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化 .例

3、如正方形面积 S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随 机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两 个变量间的关系进行估计.3.散点图将收集到的两个变量的统计数据分别作为横、纵坐标,在直角坐标系中描点,这样的图叫做散点图。通 过散点图可初步判断两个变量之间是否具有相关关系,她反映了各数据的密切程度。要点二、正相关、负相关(1)正相关:在统计数据中的两个变量,一个变量的值由小变大时,另一个变量的值也由小变大,这 种相关称为正相关。如:家庭年收入越高,年饮食支出越高。反映在散点图上它们散

4、布在从左下角到右上 角的区域,按表中所列数据制作散点图如图A05101520253035B541. 67602.66670.09704.99806.71908.59975.421034.75(2)负相关:如果两个变量中,一个变量的值由小到大变化时,另一个变量的值由大到小变化,那么 这种相关称为负相关。在散点图中,对应数据的位置为从左上角到右下角的区域。按表中所列数据制作的 散点图如图。C581618283035D6456504237322170处 40.3020.1。O 1020Wt(3)无相关关系:如果关于两个变量统计数据的散点图如下图所示,那么这两个变量之间不具有相关 关系。例如,学生的身

5、高与学生的学习成绩没有相关关系。120'.,90*60"3。1*°飞丁标而血向f痂而要点诠释:利用散点图可以大致判断两个变量之间有无相关关系。【高清课堂:变量的相关关系400458知识讲解2】要点三、线性回归方程1 .回归直线方程(1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。如果散点 图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫 做回归直线。求出的回归直线方程简称回归方程。2 .回归直线方程的求法设与n个观测点(xyi) i 1,2, ,n最接近的直线方程为$ bx a,其中a、b是

6、待定系数则yibx a,(i 1,2,L ,n).于是得到各个偏差yiyiyi (bx a),(i 1,2,L ,n).显见,偏差yi g的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与 相应直线在整体上的接近程度,故采用n个偏差的平方和.222Q (必 bxi a) (y? bx? a)(yn bxn a)表示n个点与相应直线在整体上的接近程度、n记 Q(yi bx a)2.i 1上述式子展开后,是一个关于a、b的二次多项式,应用配方法,可求出使Q为最小值时的a、b的值.nXi y nx y i 12-2,X nx i 1yin i 1n(XiX)(yiy)i 1 n

7、(Xi X)2 i 1a y bx相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。要点诠释:1 .对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.2 .求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义 否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性3 .求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,

8、避免因方t算产生失误 .4 .回归直线方程在现实生活与生产中有广泛的应用 .应用回归直线方程可以把非确定性问题转化成确定 性问题,把“无序”变为“有序”,并对情况进行估测、补充 .因此,学过回归直线方程以后,应增强学生 应用回归直线方程解决相关实际问题的意识 【典型例题】类型一:变量间的相关关系与函数关系例1.下列图形中具有相关关系的两个变量是()ABCD【答案】C【解析】A、B中显然任给一个x都有唯一确定的y值和它对应,是函数关系;C中从散点图可看出所有点看上去都在某条直线附近波动,具有相关关系,因此变量间是不相关的。举一反三:【变式1】下列两变量中具有相关关系的是 ()(A)正方体的体积与

9、边长;(B)匀速行驶的车辆的行驶距离与时间;(C)人的身高与体重;(D)人的身高与视力【答案】选(C).例2.某小卖部为了解热茶销售量与气温之间的关系,随机统计并制作了某 6天卖出热茶杯数与当天气温的对比表。气温x/C2618131041杯数y202434395064请画出散点图,并判断它们是否有相关关系。【解析】 散点图如下图:4Mt40 . jjj -s dK il-5 d| 5 10 15 2G 15 30 35从图中发现气温与杯数之间具有相关关系,当气温的值由小到大变化时杯数值由大变小,所以气温和 杯数成负相关。【总结升华】画出散点图可帮助分析变量间是否具有相关关系,但不是唯一的判断途

10、径。举一反三:【高清课堂:变量的相关关系400458例1】【变式1】对变量x, y有观测数据(xi,yi) (i=l,2, 丁10),得散点图1;对变量u , v有观测数据(UM) (i=1,2, ;10),得散点图2.由这两个散点图可以判断图1A.变量x与y正相关,u与v B.变量x与y正相关,u与v C.变量x与y负相关,u与v D.变量x与y负相关,u与v【答案】C图2正相关负相关正相关负相关【变式2下表是某地的年降雨量与年平均气温,判断两者是相关关系吗?求回归直线方程有意义吗?年平均气温(C)12.5112.7412.7413.6913.3312.8413.05年降雨量(mm)7485

11、42507813574701432以x轴为年平均气温,y轴为年降雨量,可得相应的散点图如下图所示。【解析】因为图中各点并不在一条直线的附近,所以两者不具有相关关系,求回归直线方程是没有意义的。【总结升华】用回归直线进行拟合两变量关系的一般步骤为:作出散点图,判断各点是否散布在一条直线附近。如果各点散布在一条直线附近,那么可用公式求出线性回归方程;如果各点不在一条直线附近,那 么求出的回归直线方程没有意义。类型二:回归直线方程的求解例3. (2014春 吉林龙井市期中)某产品的广告费与销售额有如下数据:x2356y67811(1)求成本y与产量x之间的线性回归方程.(2)若实际销售额不少于60万

12、元,是广告费支出应该不少于多少?【思路点拨】(1)先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线 性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程.(2)将y=60代入回归直线方程求出 x的值即为实际销售额不少于60万元时广告费支出的估计值.【答案】(1) y=1.1x+3.6; (2) 51.2 万元_44【解析】(1) x 4, y 8,x2 74,yi 139,i 1i 1139 4 4 8 b 1 1 , a=8-1.1 x 4=3.674 4 16故回归方程为y=1.1x+3.6(2)当 y=60 时,1.1x+3.6=60 ,解得 x=51.2

13、,若实际销售额不少于 60万元,则广告费支出应不少于51.2万元.举一反三广告费用x (力兀)4235销售额y (力兀)49263954【变式1】某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程y?bx ?中的b?为9. 4,据此模型预报广告费用为6万元时销售额为65. 5万元C. 67. 7万元D. 72. 0万元A. 63. 6 万元B.【答案】选Br 4 2 3 5 解析x4U3.5,y49 26 39 54442$ § b$ 42 9.4 3.5 9.1,回归方程为 $ 9.4x 9.1,当 x 6时,$ 9.4 6 9.1=65.5 ,故选 B.【变式2】

14、观察两相关变量得如下数据:x12-3一 4553421y一 9一 7-5-3115379求两变量间的回归方程.【答案】y x【解析】列表:i12345678910xi1-2-3一 4-553421yi一 9一 7-5-3115379xiyi9141512551512149计算得:X 0, y 0。10102X 110,Xj y, 110。i 1i 110xiyi 10xy .$ i 1110 10 0 110 2-2110 10 0x: 10xi 1$ y $x 0 $ 0 0。所求回归直线方程为y x。类型三:利用回归直线对总体进行估计例4.某5名学生的总成绩和数学成绩如下表:学生ABCDE

15、总成绩(分)482383421364362数学成绩(分)7865716461(1)求数学成绩对总成绩的回归直线方程;(2)如果一个学生的总成绩为 450分,试预测这个学生的数学成绩。【解析】(1)列表i12345xi482383421364362yi7865716461xiyi37596248952989123296220822012 339x, y55552X2 819794 ,Xi yi 1377601 1i 15_ _Xyi 5x y i 152-2X 5x13776 5 012 339 55r 0.132,2012819794 5 i 13390,132201214.683。,回归方程

16、为y 0.132X 14.683。(2)根据上面求得的回归方程,当总成绩为 450分时,y 0.132 450 14.683 74。即数学成绩大约为 74分。【总结升华】利用回归直线,可以进行预测,但并不是一定能达到预测的结果。事实上,有可能因其 他的随机因素而出现偏差。举一反三:【变式1】(2015春湖南娄底期中)假设关于某设备使用年限x (年)和所支出的维修费用y (万元)有如下统计资料:x1245y11.55.58若由资料可知y对x呈线性相关关系,则 y与x的线性回归方程 y bx a必过的点是()A. (2, 2) B, (1, 2)C, (3, 4) D, (4, 5)【思路点拨】根

17、据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线 性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标.【答案】C12 4 5【解析】 x 34 1 1.5 5.5 8y 4 ,4,这组数据的样本中心点是(3, 4) 线性回归方程过样本中心点, 线性回归方程一定过点(3, 4)故选C.【变式2下表是某地搜集到的新房屋的销售价格y,(单位:万元)和房屋的面积x(单位:m。)的数据:x11511080135105y44.841.638.449.242(1)画出散点图;(2)求回归方程;(3)根据(2)的结果估计当房屋面积为150 m2时的销售价格.【解析】据已知样本数据得到回归直线方程后,即得到两个变量之间相关关系的一个规律,因此可将给定的x值代入回归直线方程预测 y值.(1)散点图如图2-3-7所示.价格/万无5045牛080 100 120 140 2-3-7(2)由散点图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论