版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、编辑ppt第第8章章 内生性、工具变量与内生性、工具变量与GMM估计估计外生性与常见的内生性问题矩估计(MM)与工具变量法(IV)线性模型的两阶段最小二乘估计(2SLS)线性模型的广义矩估计(GMM)编辑ppt8.1 外生性与常见的内生性问题外生性与常见的内生性问题一、外生性假设与内生性问题二、常见的内生性编辑ppt一、外生性假设与内生性问题一、外生性假设与内生性问题线性回归模型中一个重要的假设是“严格外生性严格外生性”: E( |X)=0 严格外生性(严格外生性(strictly exogeneity)的含义是:各期的解释解释变量变量Xt独立独立于所有期的随机扰动项随机扰动项t 。 在严格外
2、生性严格外生性与球型球型假设下,OLS估计量是BLUE。这两大假设也称为Yt或t是是独立同分布独立同分布的(iid)。 对模型 Yt=0+1Xt1+kXtk+t 或 Yt= Xt + t 或 Y= X + 1 1、外生性与、外生性与OLSOLS估计量的统计性质估计量的统计性质编辑ppt 如果X的严格外生性不满足,则需假设Xt与t的同期无关性同期无关性(contemporaneously uncorrelated): E(t|Xt)=0 且 tiid(0, 2) E(t|Xt)=0称为解释变量与随机扰动项同期无关同期无关。或称Xt为外外生的生的(exogenous),否则,称为同期相关同期相关或
3、内生的内生的(endogenous) XX= Plim(XX/n)=E(XtXt)编辑ppt 2 2、出现同期相关、出现同期相关OLS估计的后果估计的后果Question: What will happen if E(t|Xt)=0 fails? 于是:Plim(b1)= 1+ Cov(Xt,t)/Var(Xt)1 假设有一元模型 Yt=0+1Xt+t出现Xt与t的同期相关性:Cov(Xt,t)=E(Xtt)0后果后果:OLS估计量不一致,(当然也是有偏的)。将原模型Yt代入上式得:编辑ppt 对多元模型 Yt= Xt + t 或 Y= X + 小样本下:E(b|X)= +(XX)-1XE(
4、|X) +0= 在X内生内生的情况下的情况下:OLS估计量有偏且不一致编辑ppt 假设模型为 Yt=0+1Xt+2Yt-1+t=Xt* +t其中 Xt*=1, Xt , Yt-1, t=t-1+vt 二、几种常见的同期相关二、几种常见的同期相关/ /内生的情形内生的情形)(00)()()(111ttttttttYEYEXEEE*tXE(Yt-1t-1) 0 情形情形1: 1: 随机扰动项自相关且模型含滞后被解释变量随机扰动项自相关且模型含滞后被解释变量注意注意: (1)如果t不存在自相关,则E(Xt*t)=0,但有E(Xt+1*t) 0,即不存在同期相关同期相关,只存在异期相关异期相关。 问题
5、问题:如果t只存在2阶自相关,情形会如何?编辑ppt 情形情形2 2:存在遗漏变量,且遗漏变量与解释变量相关:存在遗漏变量,且遗漏变量与解释变量相关 如,当设定如下工资方程时: lnWaget=0+1educt+ut一个重要的影响因素“能力”被遗漏了,而“能力”与“受教育程度”往往有较强的相关性。 假设模型为 Yt=0+1Xt1+2Yt-1+t=Xt* +t但 t中包含了一个与Xt1同期相关另一变量X2t: t=Xt2+ut这时,X1的严格外生性不满足,它与t的同期不相关性也不满足。编辑ppt 情形情形3 3:存在测量误差:存在测量误差 假设模型 Yt=0+1Xt+t 假设收集不到Xt的精确观
6、测值,收集到的Xt*包含了测量误差vt: Xt*= Xt+vt 由于实际估计的是如下可观测变量的回归模型: Yt=0+1Xt*+ut于是: ut=Yt- 0-1Xt*= 0+1Xt+t-0-1(Xt+vt) = t - 1vt E(Xt*ut)=E(Xt+vt)ut=E(Xtut)+E(vtut) =E(Xtt)- 1E(Xtvt)+E(tvt) -1E(vt2) =-1v20问题:问题:如果X可观测,而Y不可观测,情况如何?编辑ppt 情形情形4. 4. 联立方程偏误联立方程偏误 设有如下简单的Keynsian模型 Ct=0+1Yt+t Yt=Ct+It其中,Yt、Ct、It分别表示国民收入
7、、消费与投资。Ct、Yt也称为模型的内生变量内生变量(endogenous variables),It称为外生变量外生变量(exogenous variable)。则: E(Ytt)=E(Ct+It)t =E(Ctt)+E(Itt)=E(Ctt)0事实上,E(Ytt)=E(0+1Yt+t)t=1E(Ytt)+E(t2) 从而: Cov(Yt,t)= E(Ytt)=2/(1-1)0编辑ppt8.2 矩估计与矩估计与工具变量法工具变量法一、矩估计一、矩估计二、矩估计中的工具变量法二、矩估计中的工具变量法三、工具变量法的统计性质三、工具变量法的统计性质四、弱工具变量带来的估计偏误四、弱工具变量带来的
8、估计偏误编辑ppt 内生性内生性的核心问题是 E(t|Xt) 0,而工具变量法则是寻找一组工具变量Z,满足 E(t|Zt) = 0,并按矩矩估计估计的思想来进行参数估计的。一、矩估计一、矩估计 1 1、矩估计、矩估计(Method of Moment, MM)(Method of Moment, MM) 矩估计矩估计是一种类比方法类比方法,该方法从总体具有的某从总体具有的某些固有的特征些固有的特征( (总体矩总体矩) )出发,认为如果样本是从某出发,认为如果样本是从某总体中抽出的,则样本也应具有类似的特征(样本总体中抽出的,则样本也应具有类似的特征(样本矩),从而通过计算样本的相关特征,寻找总
9、体参矩),从而通过计算样本的相关特征,寻找总体参数的估计数的估计。编辑ppt例:例:对于总体均值总体均值,=E(X),这时g(X)=X 对于总体方差总体方差,2=E(X-)2,这时g(X)=(X-)2总体均值称为总体的1 1阶原点矩阶原点矩,总体方差称为总体的2 2阶中心矩阶中心矩。 总体矩总体矩M可以简单地定义为一随机变量X的某个连续函数g 的数学期望: M=Eg(X) 根据类比法的原理,可以用样本矩(或样本矩函数)来估计总体矩(或总体矩函数),而且,样本矩在大样本下往往具有一致性。这一类比法也称为矩法矩法。编辑ppt 矩法可用于估计总体的参数矩法可用于估计总体的参数 例例1. 设Xi是从某
10、一服从指数分布的总体 f(X,)=exp(-X), X0中抽出的。 由于指数分布的均值为:M1=()=E(X)=1/编辑ppt 2 2、OLS作为一个矩问题作为一个矩问题 对模型 Y=X + 假设模型的设定是正确的,则有E(X )=0,从而有矩条件:M( )=EX(Y-X )=0 根据矩法(类比法),相应的样本矩为: m( )= (1/n)X(Y-Xb)问题归结为,寻找适当的b,使得 m(b)=0或: (1/n)X(Y-Xb)=0 解为: b=(XX)-1XY线性模型的OLS估计可以看成是矩估计矩估计。编辑ppt 二、矩估计中的工具变量二、矩估计中的工具变量(IV)(IV)法法 假设有如下模型
11、: Yt=Xt1 1 +Xt22+t其中:X2为单一变量,X1为包括截距项的k维行向量 2、 1为对应的参数变量与参数向量。 如果模型设定正确,则有如下总体矩条件总体矩条件 E(Xt1t )=0, E(Xt2t)=0 (1/n)Xt1(Yt-Xt1b1-Xt2b2) =0 (1/n)Xt2(Yt-Xt1b1-Xt2b2) =0编辑ppt (1/n)Xt1(Yt-Xt1b1-Xt2b2) =0 (1/n)Xt2(Yt-Xt1b1-Xt2b2) =0正规方程组 如果缺少矩条件,如E(Xt2t)0,则上述正规正规方程组方程组最后一个方程不存在,则无法求解。编辑ppt 这时,如果能寻找一工具变量工具变
12、量Z2,满足Cov(Zt2, t)=E(Zt2t)=0,Cov(Zt2,Xt2)0。使得原模型的矩条件变为 E(Xt1t)=0, E(Zt2t)=0 bIV=(ZtXt)-1ZtYt=(ZX)-1(ZY) (1/n)Xt1(Yt Xt1b1,IV Xt2b2,IV) =0 (1/n)Zt2(Yt Xt1b1,IV Xt2b2,IV) =0 相应的样本矩方程组为编辑ppt 假设有一元模型 Yt=0+1Xt+t出现Xt与t的同期相关性:Cov(Xt,t)=E(Xtt)0例:一元回归例 这时,寻找一工具变量工具变量Z,满足Cov(Zt, t)=E(Ztt)=0,Cov(Zt,Xt)0。使得原模型的矩
13、条件变为 E(Ztt)=0 相应的样本矩方程组为 (1/n)(Yt b0,IV Xtb1,IV) =0 (对应E(t)=0) (1/n)Zt(Yt b0,IV Xtb1,IV) =0 (对应E(Ztt)=0)解得:编辑ppt 对于矩阵形式矩阵形式: Y=X + 如果E(X )0,(假设Xk与随机项相关),用工具变量Z替代X(如用Zk替代Xk): 由于Z与X的列相同L=K,ZX满秩,解为: bIV=(ZX)-1ZY 则相应的样本矩条件为:(1/n)Z(Y-Xb)=0或 ZXb=ZY得到总体矩条件E(Z )=0 注意:注意:工具变量矩阵中所含的模型已有的外生解释变量可看成自己的工具变量。编辑ppt
14、 工具的选择工具的选择 在单方程单方程的估计中,工具变量的寻找较困难。这时,对时间序列模型,可用随机解释变量的滞后期变量作为工具变量。理论上,Z中保留了X中所有被认为是外生的且与随机扰动项无关的变量,而那些内生的与随机扰动项相关的变量被工具(变量)所取代。C的估计可用外生变量I作为Y的工具变量,1仍是1的工具变量,这时Z=(1 I),于是编辑ppt三、工具变量三、工具变量(IV)法的统计性质法的统计性质 一元模型 Yt=0+1Xt+t出现Xt与t的同期相关性:Cov(Xt,t)=E(Xtt)0 这时,寻找一工具变量工具变量Z,满足Cov(Zt,t)=0,Cov(Zt,Xt)0于是:注意:在小样
15、本下,工具变量法估计量仍是有偏的:注意:在小样本下,工具变量法估计量仍是有偏的: 1 1、一致性、一致性编辑ppt 对于矩阵形式矩阵形式: Y=X + 如果E(X )0, 用工具变量Z替代X,有总体矩条件E(Z )=0 解为: bIV=(ZX)-1ZY 注意:这里要求工具变量与解释变量间的关满足: Plim(ZX/n)=E(ZtXt)= zx是一满秩有限矩阵 编辑ppt Proof: 由于 bIV = +(ZX)-1Z 或 b- =(ZX)-1Z 另一方面,由于 EZt t=0,由中心极限定理中心极限定理:而 Var(Ztt)=E(t2ZtZt)=EE(t2ZtZt|Zt)=EZtZtE(t2
16、 |Zt) = 2E(ZtZt) = 2 ZZ2 2、渐近正态性、渐近正态性编辑ppt3、IV估计量不具有渐近有效性估计量不具有渐近有效性 Z的不同取法,都可得到参数的一致估计,但渐近方差不同。 当取Z=X时,bIV具有最小的渐近方差。由于 2 ( ZX)-1 ZZ ( ZX)-1 =2plim(n-1ZX)-1(n-1ZZ)(n-1XZ)-1 = 2plim n-1XZ(ZZ)-1ZX-1 =2plim n-1XPZX)-1 (*)如果,Z=X,则(*)退化为 2plim n-1XX(XX)-1XX-1 =2plim n-1XX)-1 (*)编辑ppt于是: XX-XPZX=XMZX =(M
17、ZX)(MZX)=半正定矩阵半正定矩阵 下面证明 2 ( XX)-1 =2plim(n-1XX)-1是最小的渐近方差。 对任意可行的Z,相应的bIV的渐近方差为 (1/n)2plim n-1XZ(ZZ)-1ZX-1=(1/n)2plim n-1XPZX)-1这也简接证明了第4章中曾指出的如下一类估计量的渐近有效性 只需证明,对任意nN,XX与其他估计的方差之差为半正定矩阵。gj(X)=Zj时,即为IV估计gj(X)=Xj时,即为OLS估计编辑ppt4 4、弱工具变量带来的估计偏误、弱工具变量带来的估计偏误 工具变量Z要求:(1)与随机扰动项不相关,(2)与解释变量X高度相关 但在应用研究中,这
18、样的工具变量Z很难找到:一般找到的工具变量往往是: (1)与随机扰动项有轻度相关,(2)与解释变量X也是轻度相关当工具变量Z与解释变量有轻度相关性时,称之为弱工具弱工具变量变量(weak IV)。 在弱工具变量情形下,IV估计可能会带来比OLS估计量更严重的不一致性编辑ppt 对一元模型 Yt=0+1Xt+t出现Xt与t的同期相关性时:Cov(Xt,t)=E(Xtt)0 采用工具变量工具变量Z得到:因此,尽管Corr(Z, ) 较小,而Corr(Z,X) 更小时,可能出现 Corr(Z, ) /Corr(Z,X)Corr(X, )从而有: bIV比bOLS偏差更大(更不具有一致性)。 而OLS估计量编辑ppt例例(内生性问题,(内生性问题,Monte Carlo 实验)实验)对Keynsians模型简化式为假设 =7.0, =0.8,且 tN(0, 1.2)(*)编辑pptn=10OLS:E()=0.8060IVE()=0.7979 由上述假设生成序列Yt与Ct,并对(*)式进行OLS及IV估计(I为工具变量),记录参数、 的估计结果 重复200次,并求200次估计的、 的均值均值与标准差标准差编辑pptn=20OLS:E()=0.802IV:E()=0.799编辑pptn=30OLS:E()=0.80093IV:E()=8.0003编辑pptn=200OLS:E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阳光心理教学课件教学课件教学课件教学
- 手术安全培训
- 菏泽学院《电子商务运营与管理》2022-2023学年第一学期期末试卷
- 2024年度产品包装设计外包服务合同2篇
- 《如何养牛才能赚钱》课件
- 护理协议书模板
- 酒店和婚庆公司合作协议书
- 小腿截肢术后护理查房
- 艺人签约合同书范本
- 经纪人与艺人签约协议 2篇
- 保安突发事件培训
- 新质生产力与乡村振兴
- 深圳大学《西方文明史》2023-2024学年第一学期期末试卷
- 租赁合同 排他条款
- 湖北省武汉市部分学校2024-2025学年高一上学期11月期中调研数学试题(含答案)
- 2024-2030年中国数据中心IT基础设施第三方服务行业前景预测及投资模式分析报告
- 医院培训课件:《医院感染预防和职业防护》
- 节约粮食英文课件
- 固体废弃物专项措施方案
- 2024年上海民政局夫妻离婚协议书
- 青年创业就业见习基地项目建设方案
评论
0/150
提交评论