(整理版)高考真题理科数学解析汇编立体几何_第1页
(整理版)高考真题理科数学解析汇编立体几何_第2页
(整理版)高考真题理科数学解析汇编立体几何_第3页
(整理版)高考真题理科数学解析汇编立体几何_第4页
(整理版)高考真题理科数学解析汇编立体几何_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考真题理科数学解析汇编:立体几何一、选择题 高考新课标理三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;那么此棱锥的体积为abcd 高考新课标理如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,那么此几何体的体积为abcd 高考浙江理矩形abcd,ab=1,bc=.将abd沿矩形的对角线bd所在的直线进行翻着,在翻着过程中,a存在某个位置,使得直线ac与直线bd垂直 b存在某个位置,使得直线ab与直线cd垂直 c存在某个位置,使得直线ad与直线bc垂直 d对任意位置,三直线“ac与bd,“ab与cd,“ad与bc均不垂直 高考重庆理设四面体的六条棱的长分别为1

2、,1,1,1,和,且长为的棱与长为的棱异面,那么的取值范围是abcd 高考四川理如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,那么、两点间的球面距离为abcda假设两条直线和同一个平面所成的角相等,那么这两条直线平行b假设一个平面内有三个点到另一个平面的距离相等,那么这两个平面平行c假设一条直线平行于两个相交平面,那么这条直线与这两个平面的交线平行d假设两个平面都垂直于第三个平面,那么这两个平面平行 高考上海春空间三条直线假设与异面,且与异面,那么 答a与异面.b与相交.c与平行.

3、d与异面、相交、平行均有可能. 高考陕西理如图,在空间直角坐标系中有直三棱柱,那么直线与直线夹角的余弦值为abcd 高考江西理如图,正四棱锥s-abcd所有棱长都为1,点e是侧棱sc上一动点,过点e垂直于sc的截面将正四棱锥分成上、下两局部.记se=x(0<x<1),截面下面局部的体积为v(x),那么函数y=v(x)的图像大致为高考湖南理某几何体的正视图和侧视图均如图1所示,那么该几何体的俯视图不可能是a图1bcd高考湖北理我国古代数学名著九章算术中“开立圆术曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术相当于给出了球的体积,求其直径的一个近似公式. 人们

4、还用过一些类似的近似公式. 根据判断,以下近似公式中最精确的一个是 侧视图正视图24242俯视图abcd(一)必考题(1114题)高考湖北理某几何体的三视图如下图,那么该几何体的体积为ab cd高考广东理(立体几何)某几何体的三视图如图1所示,它的体积为abcd高考福建理一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是a球b三棱柱c正方形d圆柱高考大纲理正四棱柱中,为的中点,那么直线 与平面的距离为a2bcd1高考北京理某三棱锥的三视图如下图,该三棱锥的外表积是abcd 高考安徽理设平面与平面相交于直线,直线在平面内,直线在平面内,且,那么“是“的a充分不必要条件b必要不充分条

5、件c充要条件d即不充分不必要条件二、填空题高考天津理个几何体的三视图如下图(:),那么该几何体的体积为_.高考浙江理某三棱锥的三视图(:cm)如下图,那么该三棱锥的体积等于_cm3. 高考四川理如图,在正方体中,、分别是、的中点,那么异面直线与所成角的大小是_.abcd高考上海理如图,ad与bc是四面体abcd中互相垂直的棱,bc=2。假设ad=2c,且ab+bd=ac+cd=2a,其中a、c为常数,那么四面体abcd的体积的最大值是 _ .高考上海理假设一个圆锥的侧面展开图是面积为2p的半圆面,那么该圆锥的体积为_ .高考山东理如图,正方体的棱长为1,分别为线段上的点,那么三棱锥的体积为_.

6、高考辽宁理正三棱锥abc,点p,a,b,c都在半径为的求面上,假设pa,pb,pc两两互相垂直,那么球心到截面abc的距离为_.高考辽宁理一个几何体的三视图如下图,那么该几何体的外表积为_.高考江苏dabc如图,在长方体中,那么四棱锥的体积为_cm3.高考大纲理三棱柱中,底面边长和侧棱长都相等,那么异面直线与所成角的余弦值为_.高考安徽理某几何体的三视图如下图,该几何体的外表积是.三、解答题高考天津理如图,在四棱锥中,丄平面,丄,丄,.()证明丄;()求二面角的正弦值;()设e为棱上的点,满足异面直线be与cd所成的角为,求ae的长.高考新课标理如图,直三棱柱中,是棱的中点,(1)证明:(2)

7、求二面角的大小.高考浙江理如图,在四棱锥pabcd中,底面是边长为的菱形,且bad=120°,且pa平面abcd,pa=,m,n分别为pb,pd的中点.()证明:mn平面abcd;() 过点a作aqpc,垂足为点q,求二面角amnq的平面角的余弦值.高考重庆理(本小题总分值12分()小问4分()小问8分)如图,在直三棱柱 中,ab=4,ac=bc=3,d为ab的中点()求点c到平面 的距离;()假设,求二面角 的平面角的余弦值.高考四川理如图,在三棱锥中,平面平面.()求直线与平面所成角的大小;()求二面角的大小.高考上海理如图,在四棱锥p-abcd中,底面abcd是矩形,pa底面a

8、bcd,e是pcab=2,ad=2,pa=2.求:abcdpe(1)三角形pcd的面积;(2)异面直线bc与ae所成的角的大小. 高考上海春如图,正四棱柱的底面边长为,高为,为线段的中点.求:(1)三棱锥的体积;(2)异面直线与所成角的大小(结果用反三角函数值表示)是平面内的一条直线,是外的一条直线(不垂直于),是直线在上的投影,假设,那么为真.高考山东理在如下图的几何体中,四边形是等腰梯形,平面. ()求证:平面;()求二面角的余弦值.高考辽宁理 如图,直三棱柱,点m,n分别为和的中点.()证明:平面;()假设二面角为直二面角,求的值.高考江西理在三棱柱中,在在底面的投影是线段的中点。(1)

9、证明在侧棱上存在一点,使得平面,并求出的长;(2)求平面与平面夹角的余弦值。高考江苏如图,在直三棱柱中,分别是棱上的点(点 不同于点),且为的中点.求证:(1)平面平面;(2)直线平面.高考湖南理 如图5,在四棱锥p-abcd中,pa平面abcd,ab=4,bc=3,ad=5,dab=abc=90°,e是cd的中点.()证明:cd平面pae;()假设直线pb与平面pae所成的角和pb与平面abcd所成的角相等,求四棱锥p-abcd的体积.abcdpe图5高考湖北理如图1,过动点a作,垂足d在线段bc上且异于点b,连接ab,沿将折起,使(如图2所示). ()当的长为多少时,三棱锥的体积

10、最大;()当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.dabcacdb图2图1me.·高考广东理如图5所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.()证明:平面;()假设,求二面角的正切值.高考福建理如图,在长方体中为中点.()求证:()在棱上是否存在一点,使得平面?假设存在,求的长;假设不存在,说明理由. ()假设二面角的大小为,求的长.高考大纲理(注意:在试题卷上作答无效)如图,四棱锥中,底面为菱形,底面,是上的一点,.(1)证明:平面;(2)设二面角为,求与平面所成角的大小.高考北京理如图1,在rtabc中,c=90&

11、#176;,bc=3,ac=6,d,e分别是ac,ab上的点,且debc,de=2,将ade沿de折起到a1de的位置,使a1ccd,如图2. (1)求证:a1c平面bcde;(2)假设m是a1d的中点,求cm与平面a1be所成角的大小;(3)线段bc上是否存在点p,使平面a1dp与平面a1be垂直?说明理由. 高考安徽理平面图形如图4所示,其中是矩形,.现将该平面图形分别沿和折叠,使与所在平面都与平面垂直,再分别连接,得到如图2所示的空间图形,对此空间图形解答以下问题.()证明:; ()求的长;()求二面角的余弦值. 高考真题理科数学解析汇编:立体几何参考答案一、选择题 【解析】选 的外接圆

12、的半径,点到面的距离 为球的直径点到面的距离为 此棱锥的体积为 另:排除 【解析】选 该几何体是三棱锥,底面是俯视图,高为 此几何体的体积为 【答案】b 【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项b是正确的. 【答案】a 【解析】. 【考点定位】此题考查棱锥的结构特征,考查空间相象力,极限思想的运用,是中档题. 答案a 解析 以o为原点,分别以ob、oc、oa所在直线为x、y、z轴, 那么,a , 点评此题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等根底知识结合到了一起.是一道知识点考查较为全面的好题.要做好此题需要有扎实的数

13、学根本功. 答案c 解析假设两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以a错;一个平面不在同一条直线的三点到另一个平面的距离相等,那么这两个平面平行,故b错;假设两个平面垂直同一个平面两平面可以平行,也可以垂直;故d错;应选项c正确. 点评此题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本根底知识的定义、定理及公式. d 解析:不妨设,那么,直线与直线夹角为锐角,所以余弦值为,选a. a【解析】此题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法. (定性法)当时,随着的增大,观察图形可知

14、,单调递减,且递减的速度越来越快;当时,随着的增大,观察图形可知,单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有a图象符合.应选a. 【点评】对于函数图象的识别问题,假设函数的图象对应的解析式不好求时,作为选择题,没必要去求解具体的解析式,不但方法繁琐,而且计算复杂,很容易出现某一步的计算错误而造成前功尽弃;再次,作为选择题也没有太多的时间去给学生解答;因此,使用定性法,不但求解快速,而且准确节约时间. 【答案】d 【解析】此题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,a,b,c都可能是该

15、几何体的俯视图,d不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形. 【点评】此题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 考点分析:考察球的体积公式以及估算. 解析:由,设选项中常数为,那么;a中代入得,b中代入得,c中代入得,d中代和主得,由于d中值最接近的真实值,应选择d. 考点分析:此题考察空间几何体的三视图. 解析:显然有三视图我们易知原几何体为 一个圆柱体的一局部,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,那么知所求几何体体积为原体积的一半为.选b. 解析:c.该几何体下局部是半径为3,高为5的圆柱,体积为,上局部

16、是半径为3,高为4的圆锥,体积为,所以体积为. 【答案】d 【解析】分别比拟abc的三视图不符合条件,d符合. 【考点定位】考查空间几何体的三视图与直观图,考查空间想象能力、逻辑推理能力. 答案d 【解析】连结交于点,连结,因为是中点,所以,且,所以,即直线 与平面bed的距离等于点c到平面bed的距离,过c做于,那么即为所求距离.因为底面边长为2,高为,所以,所以利用等积法得,选d. 【答案】b 【解析】从所给的三视图可以得到该几何体为三棱锥,此题所求外表积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:,因此该几何体外表积,应选b. 【考点定位】本小题主要考查的是三棱锥的三视

17、图问题,原来考查的是棱锥或棱柱的体积而今年者的是外表积,因此考查了学生的计算根本功和空间想象能力. 【解析】选 如果;那么与条件相同 二、填空题 【答案】 简单组合体的三视图的画法与体积的计算以及空间想象能力. 【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:=. 【答案】1 【解析】观察三视图知该三棱锥的底面为一直角三角 . 答案90º 解析方法一:连接d1m,易得dna1d1 ,dnd1m, 所以,dn平面a1md1, 又a1m平面a1md1,所以,dna1d1,故夹角为90º 方法二:以d为原点,分别以da, dc, dd1为x,

18、y, z轴,建立空间直角坐标系dxyz.设正方体边长为2,那么d(0,0,0),n(0,2,1),m(0,1,0)a1(2,0,2) 故, 所以,cos< = 0,故dnd1m,所以夹角为90º 点评异面直线夹角问题通常可以采用两种途径: 第一,把两条异面直线平移到同一平面中借助三角形处理; 第二,建立空间直角坐标系,利用向量夹角公式解决. adbec解析 作bead于e,连接ce,那么ad平面bec,所以cead, 由题设,b与c都是在以ad为焦距的椭球上,且be、ce都 垂直于焦距ad,所以be=ce. 取bc中点f, 连接ef,那么efbc,ef=2, 四面体abcd的体

19、积,显然,当e在ad中点,即 b是短轴端点时,be有最大值为b=,所以. 评注 此题把椭圆拓展到空间,对缺少联想思维的考生打击甚大!当然,作为填空押轴题,区分度还是要的,不过,就抢分而言,胆大、灵活的考生也容易找到突破点:ab=bd(同时ac=cd),从而致命一击,逃出生天! porlhpl2pr解析 如图,Þl=2,又2pr2=pl=2pÞr=1, 所以h=,故体积. 【解析】因为点在线段上,所以,又因为点在线段上,所以点到平面的距离为1,即,所以. 【答案】 【答案】 【解析】因为在正三棱锥abc中,pa,pb,pc两两互相垂直,所以可以把该正三棱锥看作为一个正方体的一

20、局部,(如下图),此正方体内接于球,正方体的体对角线为球的直径,球心为正方体对角线的中点. 球心到截面abc的距离为球的半径减去正三棱锥abc在面abc上的 ,所以正方体的棱长为2,可求得正三棱锥abc在面abc上的高为,所以球心到截面abc的距离为 【点评】此题主要考查组合体的位置关系、抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度较大.该题假设直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,把三棱锥转化为正方体来考虑就容易多了. 【答案】38 【解析】由三视图可知该几何体为一个长方体在中间挖去了一个等高的圆柱,其中长方体的长、宽、高分别为4、3、1,圆柱的

21、底面直径为2,所以该几何体的外表积为长方体的外表积加圆柱的侧面积再减去圆柱的底面积,即为 【点评】此题主要考查几何体的三视图、柱体的外表积公式,考查空间想象能力、运算求解能力,属于容易题.此题解决的关键是根据三视图复原出几何体,确定几何体的形状,然后再根据几何体的形状计算出外表积. 【答案】6. 【考点】正方形的性质,棱锥的体积. 【解析】长方体底面是正方形,中 cm,边上的高是cm(它也是中上的高). 四棱锥的体积为. 答案 【解析】设该三棱柱的边长为1,依题意有,那么 而 【答案】92 【解析】由三视图可知,原几何体是一个底面是直角梯形,高为4的直四棱柱,其底面积为,侧面积为,故外表积为9

22、2. 【考点定位】考查三视图和外表积计算. 三、解答题 方法一:1以为正半轴方向,建立空间直角左边系那么2,设平面的法向量那么 取是平面的法向量得:二面角的正弦值为3设;那么, 即方法二:(1)证明,由平面,可得,又由,故平面,又平面,所以. (2)解:如图,作于点,连接,由,可得平面.因此,从而为二面角的平面角. 在中,由此得,由(1)知,故在中,因此,所以二面角的正弦值为. 的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点e的位置是不确定的,需要学生根据条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好. 【解析】(1)在中, 得: 同理: 得:面

23、 (2)面 取的中点,过点作于点,连接 ,面面面 得:点与点重合 且是二面角的平面角 设,那么, 既二面角的大小为 【解析】此题主要考察线面平行的证明方法,建系求二面角等知识点. ()如图连接bd. m,n分别为pb,pd的中点, 在pbd中,mnbd. 又mn平面abcd, mn平面abcd; ()如图建系: a(0,0,0),p(0,0,),m(,0), n(,0, 0),c(,3,0). 设q(x,y,z),那么. ,. 由,得:. 即:. 对于平面amn:设其法向量为. . 那么. . 同理对于平面amn得其法向量为. 记所求二面角amnq的平面角大小为, 那么. 所求二面角amnq的

24、平面角的余弦值为. 【答案】()见解析;() . 【答案】()见解析;() . 【考点定位】本小题主要考查立体几何的相关知识,具体涉及到线面垂直的关系,二面角的求法及空间向量在立体几何中的应用,解决此类问题的关键是熟悉几何体的结构特征,熟练进行线线垂直与线面垂直的转化,主要考查学生的空间想象能力与推理论证能力.此题可以利用空间向量来解题,从而降低了题目的难度. 解:(1)由,为的中点,得,又,故,所以点到平面的距离为 (2)如图,取为的中点,连结,那么,又由(1)知,故,所以为所求的二面角的平面角. 因为在面上的射影,又,由三垂线定理的逆定理得,从而都与互余,因此,所以,因此,即,得. 从而,

25、所以,在中, 解析(1)连接oc.由,所成的角 设ab的中点为d,连接pd、cd. 因为ab=bc=ca,所以cdab. 因为等边三角形, 不妨设pa=2,那么od=1,op=,ab=4. 所以cd=2,oc=. 在rttan. 故直线pc与平面abc所成的角的大小为arctan (2)过d作de于e,连接ce. 由可得,cd平面pab. 根据三垂线定理可知,cepa, 所以,. 由(1)知,de= 在rtcde中,tan 故 点评本小题主要考查线面关系、直线与平面所成的角、二面角等根底知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题的能力. abcdpexyz解(1)因为pa

26、底面abcd,所以pacd,又adcd,所以cd平面pad, 从而cdpd 因为pd=,cd=2, 所以三角形pcd的面积为 (2)解法一如下图,建立空间直角坐标系, 那么b(2, 0, 0),c(2, 2,0),e(1, , 1), , 设与的夹角为q,那么 ,q=. abcdpef由此可知,异面直线bc与ae所成的角的大小是 解法二取pb中点f,连接ef、af,那么 efbc,从而aef(或其补角)是异面直线 bc与ae所成的角 在中,由ef=、af=、ae=2 知是等腰直角三角形, 所以aef=. 因此异面直线bc与ae所成的角的大小是 解(1),又为三棱锥的高, (2),所以或其补角为

27、导面直线与所成的角. 连接平面,在中, ,故,即异面直线与所成的角为 解析:(1)证法一 如图,过直线上任一点作平面的垂线,设直线的方向向量分别是,那么共面,根据平面向量根本定理,存在实数使得 那么 因为,所以 又因为,所以 故,从而 证法二 如图,记,为直线上异于点a的任意一点,过p作,垂足为o,那么 ,直线 又,平面, 平面,又平面, a是平面内一条直线,是外的一条直线(不垂直于),是直线在上的投影,假设,那么 解析:()在等腰梯形abcd中,abcd,dab=60°,cb=cd, 由余弦定理可知, 即,在中,dab=60°,那么为直角三角形,且.又aebd,平面aed

28、,平面aed,且,故bd平面aed; ()由()可知,设,那么,建立如下图的空间直角坐标系,向量为平面的一个法向量. 设向量为平面的法向量,那么,即, 取,那么,那么为平面的一个法向量. ,而二面角f-bd-c的平面角为锐角,那么 二面角f-bd-c的余弦值为. 解法二:取的中点,连接,由于,因此, 又平面,平面,所以 由于平面,所以平面 故,所以为二面角中,由于,因为,又,所以, 故,因此二面角的余弦值为. 【答案及解析】 (1)证明:取中点p,连结mp,np,而m,n分别是a与的中点,所以, mpa,pn,所以,mp平面ac,pn平面ac,又,因此平面mpn平面ac,而mn平面mpn,所以

29、,mn平面ac, 【点评】此题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中.第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明. 【解析】 解:(1)证明:连接ao,在中,作于点e,因为,得, byocaeza11b1c1x因为平面abc,所以,因为, 得,所以平面,所以, 所以平面, 又, 得 (2)如下图,分别以所在的直线 为x,y,z轴建立空间直角坐标系,那么a(1,0,0), c(0,-2,0), a1(0.0,2),b(0,2,0) 由(1)可知

30、得点e的坐标为,由(1)可知平面的法向量是,设平面的法向量, 由,得,令,得,即 所以 即平面平面与平面bb1c1c夹角的余弦值是. 【点评】此题考查线面垂直,二面角、向量法在解决立体几何问题中的应用以及空间想象的能力. 高考中,立体几何解答题一般有以下三大方向的考查.一、考查与垂直,平行有关的线面关系的证明;二、考查空间几何体的体积与外表积;三、考查异面角,线面角,二面角等角度问题.前两种考查多出现在第1问,第3种考查多出现在第2问;对于角度问题,一般有直接法与空间向量法两种求解方法. 【答案】证明:(1)是直三棱柱,平面. 又平面,. 又平面,平面. 又平面,平面平面. (2),为的中点,

31、. 又平面,且平面,. 又平面,平面. 由(1)知,平面,. 又平面平面,直线平面 【考点】直线与平面、平面与平面的位置关系. 【解析】(1)要证平面平面,只要证平面上的平面是直三棱柱和证得. (2)要证直线平面,只要证平面上的即可. 【解析】 解法1(如图(1),连接ac,由ab=4, e是cd的中点,所以 所以 而内的两条相交直线,所以cd平面pae. ()过点b作 为直线pb与平面pae 所成的角,且. 由知,为直线与平面所成的角. 由题意,知 因为所以 由所以四边形是平行四边形,故于是 在中,所以 于是 又梯形的面积为所以四棱锥的体积为 abcdpe图 xyz345h解法2:如图(2)

32、,以a为坐标原点,所在直线分别为那么相关的各点坐标为: ()易知因为 所以而是平面内的两条相交直线,所以 ()由题设和()知,分别是,的法向量,而pb与 所成的角和pb与所成的角相等,所以 由()知,由故 解得. 又梯形abcd的面积为,所以四棱锥的体积为 . 即可,第二问算出梯形的面积和棱锥的高,由算得体积,或者建立空间直角坐标系,求得高几体积. 考点分析:此题考察立体几何线面的根本关系,考察如何取到最值,用均值不等式和导数均可求最值.同时考察直线与平面所成角.此题可用综合法和空间向量法都可以.运用空间向量法对计算的要求要高些. 解析: ()解法1:在如图1所示的中,设,那么. 由,知,为等

33、腰直角三角形,所以. 由折起前知,折起后(如图2),且, 所以平面.又,所以.于是 , 当且仅当,即时,等号成立, 故当,即时, 三棱锥的体积最大. 解法2: 同解法1,得. 令,由,且,解得. 当时,;当时,. 所以当时,取得最大值. 故当时, 三棱锥的体积最大. ()解法1:以为原点,建立如图a所示的空间直角坐标系. 由()知,当三棱锥的体积最大时,. 于是可得, 且. 设,那么. 因为等价于,即 ,故,. 所以当(即是的靠近点的一个四等分点)时,. 设平面的一个法向量为,由 及, 得 可取. 设与平面所成角的大小为,那么由,可得 ,即. 故与平面所成角的大小为 cadb图aemxyz图bcadbefmn 图cbdpcfnebgmneh图dn 解法2:由()知,当三棱锥的体积最大时,. 如图b,取的中点,连结,那么. 由()知平面,所以平面. 如图c,延长至p点使得,连,那么四边形为正方形, 所以. 取的中点,连结,又为的中点,那么, 所以. 因为平面,又面,所以. 又,所以面. 又面,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论