(整理版)高中数学知识要点重温(5)等差等比数列_第1页
(整理版)高中数学知识要点重温(5)等差等比数列_第2页
(整理版)高中数学知识要点重温(5)等差等比数列_第3页
(整理版)高中数学知识要点重温(5)等差等比数列_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学知识要点重温5等差、等比数列1公差不为0的等差数列的通项是关于n的一次函数,一次项系数是公差;前n项和是关于n的二次函数,二次项系数是公差之半且常数项为0;即等差数列中,=+为公差,。证明某数列是等差比数列,通常利用等差比数列的定义加以证明,即证:an-an-1=常数(=常数) ,也可以证明连续三项成等差比数列。举例 、都是各项为正的数列,对任意的,都有、成等差数列,、成等比数列.试问是否为等差数列,为什么?解析:由=得=,于是=,又2=+,2=+,即2=+,数列是等差数列。注意:当用定义证明等差比数列受阻时,别忘了这“一招!上述思路的关键是由“=到“=的过渡,即所谓“升降标,这也是处

2、理数列问题的一个通法。稳固等差数列的前项和为,且,那么过两点、的直线的斜率为:(a)4 (b)3 (c) 2 (d)1迁移公差非零的等差数列中,前n项之和为,那么数列中 a不存在等于零的项b最多有一项等于零c最多有2项等于零 d可有2项以上等于零2. 等差数列an中,m+n=p+q,那么am+an=ap+aq,等比数列an中,m+n=p+q,那么aman=ap·aqm、n、p、q;等差等比数列中简化运算的技巧多源于这条性质。举例1在等差数列中,为常数,那么其前项和也为常数 a6b7c11d12 解析:等差数列的前k项和为常数即为常数,而=3为常数,2= 为常数,即前11项和为常数,选

3、c。注意:千万不要以为=,那就大错特错了!所谓“下标和相等那么对应项的和相等,是指两项和等于两项和,三项和等于三项和。等差数列中“n项和与“两项和转化为a1+an有关,某一项或某几项和均需转化为“两项和才能与“n项和联系起来。举例2等比数列中,a4+a6=3,那么a5a3+2a5+a7= 解析:a5a3+2a5+a7=a5a3+2a52+a5a7=a42+2a4a6+a62=(a4+a6)2=9稳固 在正项的等差数列和正项的等比数列中,有,试比拟与的大小。迁移 等比数列中,、是方程的两根,那么= 假设把条件中的“换成“呢?假设把条件中的“、换成“、呢? 提高 在等差数列中,前n项之和为,s5=

4、25,sn=64,sn-5=9,那么 n=_3等差数列前n项和、次n项和、再后n项和即连续相等项的和仍成等差数列;等比数列前n项和和不为0、次n项和、再后n项和仍成等比数列。举例1在等比数列中,s2 =40,s4 =60,那么s6等于 ( ) a 10 b 70 c 80 d 90解析:在等比数列中,第一个两项和为40,第二个两项和为20注意:s4是前4项和,不是两项和,那么第三个两项和为10,s6为三个两项和相加,选b。举例2 在等差数列中,前n项之和为,s3=4,s18-s15=12,那么s18= 解析:在等差数列中,第一个三项和为4,第六个三项和为12,s18即首项为4,末项为12的等差

5、数列的6项和,为48。稳固在等差数列an中,其前n项和为sn,s5=2-b,s10=4-b,那么s15=_4. 等差数列当首项a1>0且公差d<0,前n项和存在最大值。利用不等式组:确定n值,即可求得sn的最大值。等差数列当首项a1<0且公差d>0时,前n项和存在最小值。 类似地确定n值,即可求得sn的最小值;也可视sn为关于n的二次函数,通过配方求最值;还可以利用二次函数的图象来求。举例 设等差数列满足3 a8=5a13,且a1>0,那么的前_项和最大解析:思路一:由3 a8=5a13得:d=a1,假设前n项和最大,那么,又a1>0得:,n=20,即的前2

6、0项和最大。这一做法最通行。思路二:sn=na1+n(n-1)d=na1- n(n-1)a1=-a1(n2-40n),当且仅当n=20时sn最大。这一做法突显了数列的函数特征。思路三:由3 a8=5a13得15a8=25a13,即s15=s25,又a1>0,sn的图象是开口向下的抛物线上的点列,对称轴恰为n=20,故n=20时sn最大。这一做法中几乎没有运算,但设计太过“精妙,非对等差数列的性质融会贯穿而不能为,仅供欣赏。稳固 数列是等差数列,是其前n项和,且s5s6,s6=s7>s87=0 c.s9>s5 d. s6 ,s7均为的最大值 迁移 在等差数列那么在前n项和sn中

7、最大的负数为as16bs17cs18ds19 5.注意:等比数列求和公式是一个分段函数 na1 (q=1) sn= 那么涉及到等比数列求和时假设公比不是具体数值须分类讨论解题。 举例等比数列的公比为q,前n项和为sn,且s3 ,s9 ,s6 成等差数列,求q3的值。解析:不可直接用等比数列的求和公式,需讨论:假设q=1,s3=3a1 ,s9=9a1,s6=6a1,那么有:18a1=3a1+6a1, 那么a1=0, 与是等比数列矛盾,q1,于是有:,化简得:,。此题还可以用:第一个三项和、第二个三项和、第三个三项和成等比数列解决,留读者自己完成。稳固an=1+r+r2+r3+rn-1,那么数列的

8、前n项和=_6.解等差比数列有关通项、求和问题时别忘了“根本元,即把问题转化为首项a1,公差d或公比q的方程组或不等式组去处理。等差或等比数列中的任两项也可用 am-an=(m-n)d,或=qm-n。举例1 等差数列的前n项和sn,假设s3=9,s13=26求s23的值。 解析:用求和公式解方程组,求出a1,d,再代入求和公式中求s23,这是通法。也可简化为:s3=3a2=9a2=3,s13=13a7=26a7=2, a12= 1(a2、a7、a12成等差数列),s23=23a12=23。举例2等差数列an中,a3与a5的等差中项等于2,又a4与a6的等比中项等于6,那么a10等于 (a) 54 (b) 50 (c) 26 (d) 16 解析:a3与a5的等差中项等于2,即a4=2;a4与a6的等比中项等于6,即a6=18;于是2d=16,a10= a6+4d=50,选b。稳固等差数列an的首项a1=120,公差d=4,假设snan(n>1),那么n的最小值为 a61 b62 c63 d70迁移等差数列an中假设am=n,an=m且mn求证:am+n=0;简答1. 稳固c,迁移视sn为关于n的二次函数,其图象是经过原点的抛物线上的点,应选b,2. 稳固=,迁移等比数列中奇数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论