带式输送机拉紧装置的研究_第1页
带式输送机拉紧装置的研究_第2页
带式输送机拉紧装置的研究_第3页
带式输送机拉紧装置的研究_第4页
带式输送机拉紧装置的研究_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、大同大学1 概述 带式输送机结构简单,工作平稳可靠,噪音小,能实现连续长距离大倾斜输送,设备运行费用低,可在胶带的任意位置加料或卸料,具有生产效率高、输送量大、能源消耗少的特点,被广泛应用于煤炭、冶金、矿山、化工、港口、电站、轻工、建材、粮食等许多工业领域。经过近两个世纪的发展,带式输送机已经在技术上具备了高强力、大运量、大功率的现代化散状物料输送设备的特征。拉紧装置是带式输送机重要的组成部分,它的性能好坏直接影响带式输送机整机的工作能。1.1带式输送机拉紧装置的主要作用带式输送机在启动、运行、制动等工作过程中,输送带会由于拉力和惯性的作用发生蠕变,能够导致输送带变长松弛而无法工作。输送带拉紧

2、装置是保证输送带具有一定拉紧力、不发生打滑现象而正常工作的重要组件。概括起来,拉紧装置在带式输送机中具有以下一些作用: (1)保证胶带任驱动滚筒奔离点的足够张力,从而保证驱动装置依靠摩擦传动所必须传递的摩擦牵引力,以带动输送机的正常运转,防止输送带打滑。 (2)保证承载分支最小张力点的必须张力,限制输送带在托辊之问的垂度,保证带式输送机正常运行,不致因输送带下垂度过大导致煤炭垂直跳动冲击托辊而造成电机损失能量大和物料洒落等现象。 (3)补偿胶带塑性变形与过渡,工况下伸长质的变化。由于负载变化会引起输送带发生长度变化,蠕变现象也会造成输送带伸长,张紧力有变小趋势,需要张紧装置来吸收由蠕变产生的仲

3、长,维持输送机正常运行所需的最小张紧力,从而保证带式输送机的正常运行。 (4)为输送带重新接头做必要的行程准备。每部带式输送机都有若干个接头,可能在某一时间接头会出现问题,必须截头重做,张紧装置为带式输送机准备了负荷以外的运输带,这样接头故障就可以通过放松张紧装置重新接头来解决。1.2对张紧装置的要求 (1)响应速度快,工作可靠; (2)拉紧滚筒上输送带的包角,并与滚筒位移平行,施加的拉紧力应通过滚筒中心,以免张力由于其位置不同而变化; (3)不能出现死区,即拉紧滚筒作反向移动时,不至于产生张力突然变化。尤其机尾有低谷的高垂度输送机,制动时在低谷处会由于垂度过大而引起输送带的折叠和严重变形,从

4、而导致落料。1.3拉紧装置的安装位置 拉紧装置可安装位置可任意选择,空间许可的话, 理想的安装位置应靠近驱动装置,使此处的张紧力始终保持不变如安装位置离驱动装置越远,则需要增设重砣,以抵消加速和制动力,确保驱动部保持最低限度的张紧力。特定输送机的安装位置可根据张力分布的分来确定,特别是斜巷输送机机尾停机时张力很低的情况尤需注意。1.4拉紧装置的发展现状 拉紧装置直接影响带式输送机的整机性能。目前带式输送机常用的拉紧装置主要分为固定拉紧装置、重锤拉紧装置和液压拉紧装置3种。1.4.1 固定拉紧装置 固定拉紧装置的特点是拉紧滚筒在运转过程中的位置保持不变,拉紧力不能自动进行调节,只有在停车状态,才

5、能对拉紧装置的拉紧力和拉紧行程进行调整。固定拉紧装置的优点是拉紧滚筒位置固定,不需要人工操作或控制,结构简单紧凑,操作维护方便,一般用于小型带式输送机。 固定拉紧装置又分为螺旋拉紧装置和固定绞车拉紧装置。螺旋拉紧装置见图1。由图l可见,拉紧滚筒的轴承座安装在活动架上,活动架可在导轨上滑动。旋转调节螺杆,螺母带动活动架一起前进和后退,达到拉紧和放松输送带的目的。螺旋拉紧装置。一般装于机尾滚筒处,直接拉紧输送带,结构简单,安装方便,因其拉紧行程最大为lm,故适用于输送机长度小,功率较小的带式输送机。 固定绞车拉紧装置由绞车、拉紧钢丝绳、滑轮、拉紧小车等组成,通过绞车卷进、放出钢丝绳来调节输送带所需

6、的拉紧力。由图2可见。其拉紧行程大、拉紧力大,适用于长距离大运量的带式输送机,特别适用于具有储存输送带的输送机上。其最大行程达17m。图1.螺旋拉紧装置图2.固定绞车拉紧装置1.电动机 2.减速器 3.滚筒 4.钢丝绳 5.定滑轮 6.拉紧滚筒7.跑车 8.输送带1.4.2 重锤拉紧装置 重锤拉紧装置是靠重锤的重力将输送带拉紧,拉紧力的大小依靠增加或减少重锤重量来调节。 重锤拉紧装置又分为重载车式拉紧装置和重锤式拉紧装置。重载车式拉紧装置是将重物由钢丝绳通过定滑轮与滑动小车相连,将拉紧滚筒酉定在滑动小车上,由重物拉动滑动小车对输送带产生拉紧力(见图3);重锤拉紧装置是通过用钢丝绳悬挂起来的重锤

7、使输送机的拉紧车产生拉紧力。图3 重锤车式拉紧装置 重锤拉紧装置的优点是可以通过重锤的位移迅速吸收输送带的弹性伸长,动态响应快,结构简单,且重锤拉紧力是基本恒定的,仅在输送机起动和停车时产生很小的惯性力,因而安全可靠性比较高,在带式输送机中使用最为广泛。它的缺点是:拉紧力始终保持不变,不能随带式输送机起动、稳定运行所需的不同张力进行调节,在稳定运行过程中输送带始终处于过张紧状态,影响输送带的使用寿命;较为笨重,需要的工作空间大(特别是拉紧力较大时),维修较为费工费时。1.4.3 液压拉紧装置 (1)普通型液压拉紧装置 通过液压油缸(或绞车)的快速位移来吸收输送带的弹性伸长,分为液压绞车拉紧、液

8、压油缸拉紧、液压油缸与固定绞车组合拉紧3种。液压绞车拉紧装置是通过液压马达动作,使拉紧绞车卷进和松开输送带来自动调节输送带的拉紧力;液压油缸拉紧装置由蓄能站、液压泵站、拉紧油缸、电控箱和附件五大部分组成,通过液压站压力使油缸产生伸缩来调节带式输送机的拉紧力。液压拉紧装置的优点是结构紧凑,易于实现远距离控制,可以根据输送机在启动和正常运行工况下对输送带张力的不同要求调节输送带拉紧力,控制响应速度快,能够在驱动滚筒与输送带产生滑动时自动增加拉紧力。缺点是不能随输送带上载荷的变化自动进行拉紧力调节。 (2)阶段式拉紧装置 阶段式拉紧装置的主要技术特点是:(a)可以根据输送机在启动和运行工况下对输送带

9、张力的不同要求来调节皮带拉紧力(一般起动时的张紧力比稳定运行时大1.41.5倍),皮带不会始终处于起动时的张紧状态,从而延长了输送带的使用寿命。(b)带式输送机起动时,输送带的松边会突然松驰伸长,此时拉紧油缸在蓄能站的作用下,能立刻收缩活塞杆,及时补偿输送带的伸长量,减少输送带松边对紧边的冲击,起到保护输送带的作用,并保持输送机起动的可靠与平稳。(c)可简单地实现直线运动和回转运动,其布置也具有很大的灵活性。(d)由于其元件实现了系列化、标准化、通用化,容易设计制造和推广使用。(e)可以由流动着的油液带走因功率损失等原因产生的热量,避免局部温升现象。虽然阶段式拉紧装置可以在带式输送机启动与稳定

10、运行两种工况问自动调节张力,解决了输送带转为稳定运行后的过张力问题,但其缺点是不能对输送机运行过程中皮带负载的变化进行动态调节。而在带式输送机的实际运行中,皮带所需的张紧值相差甚大,拉紧装置经常处于要么张紧力不足、要么过张紧的状态。调查显示,阶段式液压张紧装置很难满足大型带式输送机的运行要求。图4 DYL型输送带自控液压拉紧站布置图1.拉紧小车 2.钢丝绳 3.定滑轮 4.动滑轮 5.油缸支座6.拉紧油缸 7.电控箱 8.液压泵站 9.腔管 10.蓄能站11.轨道 12. 输送带1.5 拉紧装置的发展趋势 综前所述,按常规方式设计的各种拉紧装置,其动态调节很难达到最佳拉紧效果。主要问题在于设计

11、都是在静态特性的基础上,通过对起动、运行各阶段不同张力的要求进行设计,未能考虑负载动态变化对胶带张力的影响,因此产生调节的不合理性。在输送带张力过度时,输送带过拉紧,应力疲劳加大,容易出现皮带拉断故障;在输送带张力不足时,导致皮带打滑及断带、着火故障,而且还容易出现皮带横向振动过大、功率消耗过大等一系列问题。针对DYL系列和其他常规拉紧装置存在的问题,基于输送机驱动电机电流与负载间呈现对应比例关系的考虑,现在有科学家提出了一种基于电机电流输入控制的力反馈动态拉紧装置的设计方案。其基本原理是:通过识别驱动电机的电流变化来间接识别输送带上载荷量的变化,以电机电流为闭环回路的控制信号,通过电流与负载

12、的对应关系计算出理论拉紧力的值,然后与力传感器所测的实际拉紧力的值进行比较,从而适应负载的动态变化。由于这种拉紧装置可以根据输送带上载荷的动态变化自动调节拉紧力,使输送带处于张紧和松弛的交替状态中,因而能够实现输送带最佳的动态拉紧效果,满足输送带不打滑、下垂度不超限而又保持正常运行所需的最小拉紧力的要求。可以预料,这种基于电机电流输入控制的力反馈动态拉紧装置将是今后一个时期的主要研究方向。2 主要设计参数及方案确定2.1 主要设计要求根据实际情况设计一台机械张紧装置:工作参数如下;(1) 最大张紧力F: (2) 绳速V: 2.2 方案的确定2.2.1 参考方案 (1)螺旋拉紧装置。螺旋拉紧装置

13、结构由齿轮组(或蜗轮、蜗杆)、滑座、螺旋拉杆、基座、螺旋滑套、滑轨、锁紧底版及转轮等组成。其核心工作部件为螺旋拉杆(带T形螺纹)、基座、螺旋滑套(带螺母),整个装置为钢结构焊接件。螺旋拉紧装置工作原理是通过调整旋转转轮带动齿轮组(或蜗轮)或直接调整旋转固定的丝杠,使带螺母的滑座产生纵向移动,从而带动滚筒座发生纵向整体移动,达到调整各种输送机胶带松紧的目的。螺旋拉紧装置结构如图1所示。螺旋拉紧装置主要运用在长度较短、伸缩量较小的的带式输送机、牵引式输送机及各种刮扳机上。图5 现在螺旋拉紧装置结构图(2)重锤拉紧装置。重力拉紧装置是结构最简单,应用最广泛的一种拉紧装置。它靠重锤力量将输送带拉紧,调

14、节张紧力依靠增加或减少重锤重量来实现。其结构形式有单重锤式、双重锤式和重载车式。一般装在离传动滚筒松边不远处,以期得到快速反应,能利用输送机走廊空间位置进行布置,可随着张力的变化靠重力自动补偿输送带的伸长。该装置要求拉紧车要灵活可靠,不能卡住。适用于较短带式输送机。其理论上能保持张紧力恒定,但实际上对于大多数重锤式拉紧装置而言,由于拉紧装置本身就有摩擦阻力存在,有死区产生,但死区范围不是太大,可以完全起到应有的张紧作用,且工作的可靠性最强。适用于上运、平运、下运,对使用环境没有特殊的要求。图6 环形或垂直的重砣式拉紧装置 (3)绞车式拉紧装置。绞车式张紧装置按张紧力的控制方式可以分为手动和自动

15、控制两种。所谓手动,就是在张紧装置上安装一个用于测定胶带张力的测力器。当观测到测力器的指标超出所允许的范围时,人为地启动电动机来进行调节,直到满足要求为止。这种形式的张紧装置结构较简单,维护容易,但需要人来监控。在手动绞车式张紧装置中,由于绞车动作不需要其它动力,具有结构简单和操作维护容易的特点,所以在国内应用比较广泛。比较常用的是蜗轮蜗杆手动绞车式张紧装置。由于绞车式张紧装置的张紧行程可以很长,同时可以配合可伸缩式胶带输送机的储带仓工作,所以,可伸缩式胶带输送机应用这种张紧装置的较多。2.2.2 方案对比 方案一的优缺点是:置因具有结构简单,调整灵活,容易布置的特点,在输送机领域的设备(如码

16、头卸船机、发电厂的斗轮堆取料机及空间狭小、长度较短的带式给料机等)上,作为胶带的松紧调整装置被广泛应用。螺旋拉紧装置结构过于简单,无导向、传动辅助装置,也无防尘密封装置,故早期螺旋拉紧装置在使用过程中费时耗力并经常出现卡阻,调整不便,影响了螺旋拉紧装置在实际生产中的推广应用。方案二的优缺点是:结构和原理都比较简单,就是利用物体自身的重力,来拉紧皮带 ,需要多大的张紧力,只要给它坠上同等重量的物体即可,它的制造也比较方便。缺点: 使用重锤式拉紧装置,输送带的张紧力始终保持不变,而带式输送机稳定运行后所需张力比起动时小,所以输送带在稳定运行中处于过张紧状态,对输送带的使用寿命产生直接影响。该套装置

17、体积大,且笨重,特别是张紧力较大时。使用时应考虑空间的问题,另外,维修带式输送机需放松输送带时比较费工费时。 起动时,机尾拉紧滚筒由于瞬间起动,拉紧滚筒将作一定范围的跳动,而就是这一瞬间的跳动,造成输送带跑偏,尤其是输送带上水分多,拉湿煤时,输送带跑偏更加严重。 方案三的优点是:结构简单,维护容易。其缺点是存在占用空间大,不便于现场布置和管理,经常发生因张紧不足或不能及时准确地进行调整而引起的胶带打滑和跑偏等现象,甚至会造成胶带压死、撕裂等严重事故。 通过以上三个方案的比较,选择第三种方案进行设计。绞车式张紧装置具有以下特点:通过鸭梨传感器电信号控制张紧装置,可靠性高。在皮带机启动阶段,能提供

18、足够大的启动张紧力;启动完毕后又可使胶带的张紧力恢复到额定值以维持胶带机的正常运行。2.2.3 传动方案的确定由框架、滑轮组和张紧绞车等组成。采用电机作为驱动源,张紧绞车为蜗杆蜗轮传动和开式齿轮传动的慢速绞车,蜗杆蜗轮的设计具备反行程自锁的特点。蜗杆的输入轴与电机的输出轴用弹性套柱销联轴器连接。蜗轮的输出轴与开式齿轮中的小齿轮连接,同时在蜗杆的一端有一摩擦阻尼装置生产的摩擦力矩可以通过压盖上的调节螺丝来调节,以使张紧绞车停车时不致反转保证钢绳的张力。滚筒组与开式齿轮中的大齿轮连接。为了减轻绕在卷筒上钢丝绳所承受的拉力,采用滑轮组结构包括动滑轮组和定滑轮组,定滑轮组(四个定滑轮并列)动滑轮组(四

19、个动滑轮并列)。张紧卷筒的一侧装有离合装置,当收胶带时须打开离合器时使卷筒和卷筒轴脱离,为使卷筒不致自由转动而发生乱绳,卷筒的同一侧还装有三块刹车带,使卷筒在放绳时产生半制动。胶带的张力是根据使用情况酌情掌握,人为调节的过紧过松都是不宜的。传动方案图如下所示:1. 电动机 2. 联轴器 3. 减速器 4. 动滑轮组 5. 钢丝绳6. 定滑轮组 7. 大齿轮 8. 卷筒 9. 传感器 10. 小齿轮3 张紧装置总体设计3.1电动机的确定该机构在传动过程中总的效率损失为: 式中: 自锁蜗杆的效率,取0.43;圆柱齿轮传动(开式传动(脂润滑)的效率,取0.95;弹性套柱销联轴器的效率,取0.99;滚

20、动轴承的效率,取0.98;滑轮组的效率,取0.889;滚筒的效率,取0.97根据传动方案的设计:张紧力F是由8根钢丝绳来承担:滚筒上的钢丝绳拉力: =80/8=10kN 滚筒上的钢丝绳速度: =0.13m/s功率: 100.13=1.3kW 电机所需输出功率: = 3.9kW选择的电动机型号:防爆电机YB132M1-6;电机参数:功率kW实际转速960r/min3.2机构工作级别的确定3.2.1机构利用等级机构利用等级按机构总设计寿命分为十级,见表8-1-1。总设计寿命规定为机构假定的使用年数内处于运转的总小时数,它仅作为机构零件的设计基础,而不能视为保用期。由表8-1-1,选取机构等级。总设

21、计寿命:6300h说明:经常中等地使用。 3.2.2机构载荷状态载荷状态是表明机构承受最大载荷及载荷变化的程度。载荷分为四级。由表8-1-2,根据实际情况选用-重。说明:机构经常承受较重的载荷,也常承受最大的载荷。3.2.3 机构工作级别机构工作级别按机构利用等级和载荷状态分为八级。见表8-1-3,根据机构利用等级与机构载荷状态选取机构工作级别为。3.3钢丝绳直径计算与选取(1)煤矿井下绞车用钢丝绳直径采用GB1102-74标准规mm,钢丝绳结构大部分是点接触光面钢丝绳。(2)点接触-股内各层之间钢丝互相交叉,呈点接触。(3)在圆股钢丝绳(GB1102-74)标准中,只有钢丝破断拉力之和而无整

22、根钢丝绳的破断拉力。(4)钢丝绳直径可由钢丝绳最大工作静拉力按式(8-1-1)确定: 式中:钢丝绳最小直径, mm;选择系数, mm/N;钢丝绳最大工作静拉力 N;KN 可根据机构工作级别确定:根据机构工作等级,查表8-1-8得: mm/Nmm查标准值,取mm 3.4卷筒几何尺寸的确定 卷筒有单层卷绕单联卷筒、单层卷绕双联卷筒。在起重高度较高时,为了缩小卷筒尺寸,可采用表面带导向螺旋槽或光面卷筒,进行多层缠绕,但钢丝绳磨损较快。不带螺旋槽的光面卷筒钢丝绳可以紧密排列。但实际作业时,钢丝绳排列凌乱,互相交叉挤压,钢丝绳寿命降低。卷筒的类型较多,最常用的是齿轮连接盘式和周边大齿轮式两种,其结构特点

23、是卷筒轴不受转矩,只承受弯矩。尤其是前者是目前标准型桥式起重机典型结构,分组性好,为封闭式传动。缺点是检修时需沿轴向外移卷筒。带周边大齿轮的卷筒多用于传动速比大,转速低的卷筒。周边大齿轮,一般均为开式齿轮传动。(1)滚筒名义直径:式中:钢丝绳的直径;与机构工作级别和钢丝绳结构有关的系数,按表8-1-54选取。根据机构工作级别M6,可查得:;则mm (2)卷筒厚度(铸钢卷筒):mm (3)多层缠绕卷筒长度:则,考虑钢丝绳在卷筒上排列可能不均匀,应将卷筒长度增加,即其中:卷筒绳槽底径,mm各层直径每层圈数设缠绕圈数根据实际的工作情况,卷筒上需有9圈绕绳,即mm ,mm , mm mm ,mmmm

24、,mmmm, mmmm为了防止钢丝绳脱出卷筒两边设挡边,其高度比最外层钢丝绳高出;即卷筒的最大外径: =407 =mm 取mm(4)卷筒强度的计算:铸造卷筒的材料应采用不低于GB/T9439中规定的HT200灰铸铁,或GB/T11352中规定的ZG270-500铸钢。铸铁件须经时效处理以消除内应力,铸钢件应进行退火处理。卷同壁内表面最大压应力:mm因此由表8-1-55选用卷筒内表面最大压应力进行强度计算:(MPa)式中: 钢丝绳最大拉力,N 卷筒绳槽节距, mm 卷筒壁厚, mm 许用压应力, MPa 与卷筒层数有关的系数卷筒层数1234系数111.41.82由于,查上面表格得系数 卷筒材料用

25、45钢,查手册,45钢的屈服强度为:MPa 则:MPaMPa经检验卷筒强度符合要求。(5)卷筒的技术要求 表面质量:卷筒不得有裂纹。成品卷筒的表面上不得有影响使用性能和有数 外观的显著缺陷(如气孔、疏松、夹渣等)。尺寸公差和表面粗糙度:同一卷筒上左右螺旋槽的底径(即卷筒直径)差,不得超过GB/T1801和GB/T1802中规定的。 加工表面未注公差尺寸的公差等级应按GB/T1804中的m级(中等级)。未注加工表面粗糙度值应按GB/T1031中得12.5um。形位公差:卷筒上配合圆()的圆度、同轴度、左右螺旋槽的径向圆跳动以及断面圆跳动,不得大于GB/T1184种的下列值:;不低于8级;不低于8

26、级。 压板用螺孔:钢丝绳压板用的螺孔必须完整, 螺纹不得有破碎、断裂等缺 陷。 焊缝:对于必须施焊的铸钢卷筒,其重要焊缝不得有裂纹和未熔合等缺陷。其焊缝质量应符合GB/T3323种的II级质量要求。3.5总传动比及传动比的分配:卷筒的转速: 电机最小满载转速: 总传动比: 具有自锁性能的蜗轮蜗杆传动,传动比根据手册,一般为62、71、80、82,在这里选择蜗轮蜗杆的传动比为62。则一对开式齿轮传动的传动比为: 3.6传动装置的运动参数计算:1.计算各轴转速:2.计算各轴输入功率:3. 计算各轴输入转矩:4 蜗轮蜗杆减速器的设计蜗杆传动是用来传递空间两交错轴之间的运动和动力的,运动可以使减速或增

27、速,它由蜗杆和蜗轮组成,其做常用的是轴交角通常为的减速传动。蜗杆和蜗轮的螺旋线方向必须保持一致。蜗杆传动主要的特点是:(1)传动平稳,振动、冲击和噪声均很小。(2)能以单机传动获得较大的传动比,结构紧凑。因此,它通常用于中小功率、间歇工作或要求自锁的场合。为了提高传动效率、减小蜗轮结构尺寸,通常将其布置在高速级。蜗杆头数根据传动比和蜗杆传动的机械效率确定,越少,结构越紧凑,但机械效率越低;越多,机械效率越高,但蜗杆加工越困难。取的蜗杆,多用于要求自锁和大传动比的情况。蜗轮的齿数,通常取。为了避免蜗轮轮齿发生根且并保证至少有两对以上的齿参与啮合,不应小于26。但在动力传动中,也不宜太多,若过多,

28、则结构尺寸过大,蜗杆支撑跨度增大,使蜗杆刚度降低,从而影响蜗杆传动的啮合精度。考虑到蜗轮的使用情况,取。蜗杆副的材料组合首先要求有良好的减磨性和抗胶合能力。此外,还要求有足够的强度。蜗杆一般采用碳钢和合金钢制造,要求有较高的齿面硬度。高速重载的蜗杆采用15Cr,20Cr或20CrMnTi等材料并经渗碳淬火处理,齿面硬度达;一般情况可用45钢或40 Cr等进行表面淬火,硬度为;对不太重要或低速重载的传动,可用40、45等碳钢经调质处理,硬度为。蜗轮的4种典型结构及主要尺寸确定:(1)镶铸式蜗轮齿圈的常用材料为铸造锡青铜,如ZcuSn10Pb1,他的减磨性和抗胶合性最好,适于滑动速度较高的场合,但

29、价格较贵;铝青铜,如ZcuAl10Fe3,强度较高,价格较低,但抗胶合性能较差,一般用于滑动速度不高(m/s)的传动;在滑动速度较低(m/s)的不重要传动中,蜗轮可用球墨铸铁或灰铸铁制造。 蜗杆传动具有传动比大、结构紧凑、工作平稳等优点,但其传动效率低,尤其在低速时,其效率更低,且蜗轮尺寸大,成本高。因此,它通常用于中小功率、间歇工作或要求自锁的场合。为了提高传动效率、减小蜗轮结构尺寸,通常将其布置在高速级。4.1蜗杆、蜗轮的基本参数及强度计算:4.1.1选择蜗轮的材料,确定许用应力蜗杆:参见7.3.1,选用45号钢表面淬火,表面硬度HRC=4550 蜗轮:参见表7.6, 选用ZCuSn10P

30、b1蜗轮许用接触应力,由式7-9 蜗轮的基本许用接触应力由表7.6查得应力循环次数N 接触强度的寿命系数则蜗轮许用接触应力蜗轮许用弯曲应力,由式7-12蜗轮的基本许用弯曲应力由表7.6查得弯曲强度的寿命系数则蜗轮的许用弯曲应力=0.82×51=41.724.1.2按齿面接触疲劳强度设计计算:由式7-8蜗杆头数 蜗轮齿数 蜗轮转矩 估取效率 蜗杆传动的总机械效率:式中:啮合效率轴承效率搅油效率带有自锁性的蜗轮蜗杆的效率:,取 蜗轮转速 则蜗轮转矩 载荷系数 使用系数 查表7.8得: 动载荷系数 估计 按 m/s估取m/s 载荷分布不均匀系数 载荷平稳则载荷系数 材料弹性系数 查表得:故

31、 查表7.3得 模数=5蜗杆分度圆直径 蜗杆的导程角 蜗轮分度圆直径 蜗轮的圆周速度4.1.3齿根弯曲疲劳强度校核计算:蜗轮齿根弯曲应力,由式7-10 蜗轮齿形系数查表7.9, 则弯曲强度足够4.1.4热平衡计算由式7-15可得蜗杆传动所需的散热面积传动效率 啮合效率 当量摩擦角由式7-14滑动速度 =由查表7.10则)=0.96散热系数,按通分良好 油的工作温度周围空气温度故4.2圆柱蜗杆传动几何尺寸的计算(1)蜗杆轴向模数(蜗轮端面模数): mm (2)传动比: (3)蜗杆头数: (4)蜗轮齿数: (5)蜗杆直径系数(蜗杆特性系数): (6)蜗轮变位系数: (7)中心距:mm (8)蜗杆分

32、度圆柱导程角: (9)蜗杆节圆柱导程角:(10)蜗杆轴向齿形角: 阿基米得圆柱蜗杆: (11)蜗杆(蜗轮)法向齿形角: (12)顶隙:mm (13)蜗杆齿顶高:mm (14)蜗轮齿顶高:mm (15)蜗杆齿根高:mm (16)蜗轮齿根高: (17)蜗杆分度圆直径:mm (18)蜗轮分度圆直径:mm (19)蜗杆节圆直径:mm(20)蜗轮节圆直径:mm (21)蜗杆齿顶圆直径:mm (22)蜗轮喉圆直径:mm (23)蜗杆齿根圆直径:mm (24)蜗轮齿根圆直径:mm (25)蜗杆轴向齿距:mm (26)蜗杆轴向齿厚:mm (27)蜗杆法向齿厚:mm (28)蜗杆分度圆法向弦齿高:mm (29)

33、蜗杆螺纹部分长度:mm (30)蜗轮最大外圆直径:mm (31)蜗轮轮缘宽度:mm (32)蜗轮咽喉母圆半径:mm (33)蜗轮齿根圆弧半径:mm (34)蜗杆轴面齿形角: (35)蜗杆轴向齿厚:mm (36)圆弧中心到蜗杆轴心线距离:mm (37)圆弧中心到螺牙对称线距离:mm (38)蜗杆轴向齿廓圆弧半径:mm (39)蜗杆螺牙齿顶厚: (40)蜗杆螺牙齿根厚:mm5 开式齿轮的设计与计算当齿轮工作于无封闭的外漏状态时,称为开式齿轮传动。开式齿轮传动易受到环境的污染,润滑条件差,齿面容易磨损,多用于低速和不重要的场合。当齿轮齿面的硬度小于或等于时,称为软齿面齿轮;当齿面得硬度大于时,称为硬

34、齿面齿轮。当齿轮传动的承载能力主要取决于轮齿弯曲强度时,开式齿轮传动易取较少的齿数,小齿轮一般可取,大齿轮。开式齿轮传动,由于润滑条件较差和工作环境恶劣,磨损快,寿命短,故应将其布置在低速级。5.1齿轮的基本参数及强度计算:5.1.1选择齿轮的材料,确定许用应力:查表: 小齿轮选用20CrMnTi 大齿轮选用20CrMnTi热处理方法:渗碳淬火查表得:强度极限: N/mm 屈服极限: N/mm。 洛氏硬度:N/mm许用接触应力,由式= 得:接触疲劳极限,查图 接触强度寿命系数,应力循环次数N,由式6-7,查图得, 接触强度最小安全系数,则 许用弯曲应力,=弯曲疲劳极限应力,查图6-7得 弯曲强

35、度寿命系数, 查得: , 弯曲强度尺寸系数, 查得: 弯曲强度最小安全系数, 查得:则 5.1.2按齿面接触强度设计计算:确定齿轮精度等级, 按, 估取圆周速度估取。查表取精度等级为8级。小轮齿数 在推荐值 中选: 大轮齿数 齿数比 小轮转矩 =载荷系数 使用系数 ,查表6.3得: 动载荷系数,由推荐值,查表得: 齿向载荷分布系数,由推荐值,查表得: 齿向载荷分配系数,由推荐值得: =1.1载荷系数 确定中心距 式中:配对材料修正系数=1 螺旋角系数 载荷系数 小轮转矩 齿宽系数取。确定模数 解得: 12确定中心距5.2计算主要几何尺寸分度圆直径: 齿顶圆直径: 齿顶高: 压力角: 基圆直径:

36、 齿距: mm 基圆齿距: mm 齿根高: mm 齿全高: mm齿根圆直径: mm mm 中心距: mm传动比: 齿厚: mm 齿槽宽: mm顶隙: mm法向齿距: mm 齿宽: mm齿顶圆压力角:齿根弯曲疲劳强度校核计算:由式6-10 齿形系数,查表得6.5: 小轮 大轮 应力修正系数, 查表得6.5 小轮 大轮 端面重合度 =轴向重合度: 总重合度: 重合度系数 故 齿根弯曲强度满足。6 滑轮组的设计 绳索滑轮一般用来导向和支承,以改变绳索及其传递拉力的方向或平衡绳索分支的拉力。6.1滑轮的设计计算6.1.1滑轮结构和材料 承受载荷不大的小尺寸滑轮( mm)一般制成实体的滑轮,用、或铸铁(

37、如)。受大载荷的滑轮一般采用球铁(如)或铸钢(如等),铸成带筋和孔或带轮辐的结构。大型滑轮( mm)一般用型钢和钢板焊接结构。 受力不大的滑轮直接安装在心轴上使用,受有较大载荷的滑轮则装在滑动轴承(轴套材料采用青铜或粉末冶金等)或滚动轴承上,后者一般用在转速较高、载荷大的情况下。轮毂或轴套长度与直径比一般取为。具有固定轴的滑轮成为定滑轮;具有活动轴的滑轮(随绳索串动改变其位置)称为动滑轮。在本设计中滑轮采用铸钢件铸成有轮辐的结构。6.1.2钢丝绳进出滑轮时的允许偏角钢丝绳绕进或绕出滑轮槽时偏斜的最大角度(即钢丝绳中心线和与滑轮轴垂直的平面之间的角度)推荐不大于。6.1.3滑轮主要尺寸如下图所示

38、:钢丝绳直径 mm滑轮绳槽底半径 mm取绳槽两侧面夹角 ,一般为 ,取 滑轮直径 (由8-1-54机构工作级别确定) 查表8-1-65取 6.1.4绳槽断面尺寸 绳槽半径R是根据钢丝绳直径的最大允许偏差为确定的。钢丝绳绕进或绕出滑轮槽时偏斜的最大角度(即钢丝绳中心线和与滑轮轴垂直的平面之间的角度)应不大于。绳槽表面粗糙度分为两级:1级: um2级 um滑轮的主要尺寸参数,如下图所示:mm mm mm mm mm mm mm mmmm mm 6.2铸造滑轮形式和轴承尺寸(1)滑轮形式及轴承尺寸 :主要尺寸如下: mm mm mm mm(2)轮毂尺寸:mm mmmm mm(3)滑轮技术要求:材料:

39、 滑轮的有关零件应符合表8.1-71的规定.外观:滑轮表面应光滑平整,应去除尖棱和冒口,滑轮不得有影响使用性能和有损外观的缺陷,如气孔,裂纹,疏松,夹渣,铸疤等。热处理:滑轮应进行退火处理,以消除铸造时产生的应力。尺寸公差和表面粗糙度:加工表面未注公差尺寸的公差等级按GB/T1804中的M级(中等级);未加工表面粗糙度值按GB/T1031中的um。形位公差:滑轮的形状和位置公差应符合2表8-1-70的规定。装配:装配好的滑轮应能灵活地旋转。滑轮的加工部位(内孔,绳槽表面等)和隔环的外露部位应涂抗腐蚀的防锈油,不加工部位应涂防锈漆。 其它 滑轮的加工部位(内孔、绳槽表面等)和隔环的外漏部位应土抗

40、腐蚀的防锈油;不加工部位应涂防锈漆。7 轴的设计7.1蜗杆轴系的结构设计7.1.1蜗杆轴直径的确定:选取45号钢作为轴的材料,调质处理实心圆轴的扭转强度计算公式为: N/mm设计计算公式: mm式中: 扭转剪应力, N/mm; 轴传递的转距, N/mm; 轴的抗扭截面系数, mm; 轴传递的功率, kW; 轴的转速, r/min; 轴的直径, mm; 考虑了弯距影响的许用扭转剪应力和设计系数,查表4-2,取。 当轴上开有键槽时会削弱轴的强度,要适当增加轴的直径。轴段上有一个键槽时,轴的直径增大3%5%,因此。查表6-2-29,选轴直径为50mm。7.1.2蜗杆轴的结构设计 由于电机已经选定,所

41、以电机的输出轴的直径已知,直径mm。电机与蜗杆轴的联接采用联轴器。凸缘联轴器结构简单,维护方便,承载能力大,工作可靠,装拆方便,传递转矩较大,能保证两轴具有较高的对中精度。 图7(1)联轴器的计算转矩:式中:计算转矩; N·mm理论转矩; N·mm工作情况系数; 取则: 查手册:选用YL9型凸缘联轴器,许用转矩 。(2)确定各轴段直径和长度 如图7所示轴段用于安装联轴器,其直径应该与联轴器的孔径相配合,因此要先选用联轴器。根据工作要求选用弹性套柱销联轴器,型号为TL9,许用转矩T=Nmm.确定轴段的直径mm,长度mm,其中选用型平键,工作长度mm. 轴段为半联轴器的轴向定位

42、,并安装滚动轴承,轴段右端制出定位轴肩,取轴肩高度),所以轴段的直径,根据工矿要求选用圆锥滚子轴承。选用轴承型号30212,尺寸,综合考虑轴承宽度与密封圈的使用,确定轴段根据轴承端盖和轴套的结构,确定. 轴段为深沟球轴承的轴向定位,轴段右端制出定位轴肩,取轴肩高度mm,因此轴段的直径。根据轴承端盖的结构,为了便于装拆,因此轴段的长度。 轴段用于蜗杆部分与轴段有一个较缓和的过渡。因此选取轴段的直径,。轴段使蜗杆得有螺纹部分,其轴径为齿顶圆的直径,长度.轴段与轴段的作用相当,因此轴径,长度。轴段用于圆锥滚子轴承的轴向定位,轴段的右端制出定位轴肩,取轴肩高度mm,因此轴段的直径。根据轴承端盖的结构,为了便于装拆,取轴段的长度。轴段用于安装滚动轴承。考虑轴承同时承受径向力和轴向力,选择圆锥滚子轴承。取轴段直径,选用30212型圆锥滚子轴承,尺寸

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论