2011届高考物理 曲线运动专题复习 新人教版_第1页
2011届高考物理 曲线运动专题复习 新人教版_第2页
2011届高考物理 曲线运动专题复习 新人教版_第3页
2011届高考物理 曲线运动专题复习 新人教版_第4页
2011届高考物理 曲线运动专题复习 新人教版_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第1讲 曲线运动 运动的合成与分解【知识概述】1曲线运动 速度的方向:质点在某一点的速度方向,沿曲线在这一点的 运动的性质:做曲线运动的物体,速度的 时刻在改变,所以曲线运动一定是 运动 曲线运动的条件:物体所受 的方向跟它的速度方向不在同一条直线上或它的 方向与速度方向不在同一条直线上 曲线运动的分类: 匀变速曲线运动:物体所受合外力方向与初速度的方向 同一 条直线上,合外力是 变加速曲线运动:物体所受合外力方向与初速度的方向 同一 条直线上,合外力是 2运动的合成与分解 基本概念: 运动的合成:已知 求合运动; 运动的分解:已知 求分运动 分解原则:根据运动的 分解,也可采用 遵循的规律:

2、位移、速度、加速度都是矢量,故它们的合成与分解都遵循 合运动与分运动的关系: 等时性:合运动和分运动经历的 ,即同时开始,同时进行,同时停止 独立性:一个物体同时参与几个分运动,各分运动 ,不受其他运动的影响 等效性:各分运动的规律叠加起来与合运动的规律有 的效果【重点解读】1对曲线运动规律的进一步理解 合力方向与速度方向的关系:物体做曲线运动时,合力的方向与速度方向一定不在同一条直线上,这是判断物体是否做曲线运动的依据 合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在合力方向和速度方向之间,速度方向与轨迹相切,合力方向指向曲线的“凹”侧如图所示 速率变化情况判断: 当合力方向与速度方向的夹

3、角为锐角时,物体的速率增大 当合力方向与速度方向的夹角为钝角时,物体的速率减小 当合力方向与速度方向垂直时,物体的速率不变 曲线运动类型的判断: 物体做曲线运动时,如合外力(或加速度)的大小和方向始终不变,则为匀变速曲线运动 物体做曲线运动时,如合外力(或加速度)是变化的(包括大小改变、方向改变或大小、方向同时改变),则为非匀变速曲线运动 两个直线运动的合运动性质的判断:根据合加速度方向与合初速度方向判定合运动是直线运动还是曲线运动 两个匀速直线运动的合运动仍然是匀速直线运动; 一个匀速直线运动与一个匀变速直线运动的合运动仍然是匀变速运动,当二者共线时为匀变速直线运动,不共线时为匀变速曲线运动

4、; 两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动; 两个匀变速直线运动的合运动仍然是匀变速运动;若合初速度与合加速度在同一直线上,则合运动为匀变速直线运动如图甲所示,不共线时为匀变速曲线运动如图乙所示2运动合成与分解的方法 运动的合成与分解的运算法则:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,所以都遵循平行四边形定则 两分运动在同一直线上时,同向相加,反向相减; 两分运动不在同一直线上时,按照平行四边形定则进行合成,如图所示 两分运动垂直或正交分解后的合成可以用勾股定理计算 小船过河问题分析: 船的实际运动是水流的运动和船相对静水

5、的运动的合运动 三种速度:v1(船在静水中的速度)、v2(水的流速)、v (船的实际速度); 三种情景:过河时间最短:船头正对河岸时,渡河时间最短,t最短 = d/v1(其中d为河宽); 过河路径最短:v2 < v1时,合速度垂直于河岸,航程最短,s最短 = d;v2 > v1时,合速度不可能垂直于河岸,无法垂直渡河如图所示,以v2 矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短由图可知,sin = v1/ v2 ,最短航程 s最短 = (v2/ v1)d 绳连物体的速度分解问题:绳连物体是指物拉绳或绳拉物由于高中研究的绳都是

6、不可伸长的,即绳的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳和平行于绳方向的两个分量,根据绳连物体沿绳方向的分速度大小相同求解【典型例题】题型 1 曲线运动的轨迹与合外力方向的确定 例1一带电物体以初速度v0从A点开始在光滑水平面上运动,一个水平力作用在物体上,物体的运动轨迹如图中实线所示,图中B为轨迹上的一点,虚线是过A、B两点并与轨迹相切的直线,虚线和实线将水平面划分为5个区域,则关于施力物体的位置,下面说法正确的是 ( ) A若该力是引力,施力物体一定在 区域 B若该力是引力,施力物体一定在 区域 C若该力是斥力,施力物体一定在 区域D若该力是斥力,施力物体可能在 或

7、区域例2如图所示,一物体在水平恒力作用下沿光滑的水平面做曲线运动,当物体从M点运动到N点时,其速度方向恰好改变了90°,则物体在M点到N点的运动过程中,物体的动能将 ( )A不断增大 B不断减小 C先减小后增大 D先增大后减小题型 2 对物体做曲线运动条件的理解 例3一个质点受两个互成锐角的恒力F1和F2作用,由静止开始运动,若运动过程中保持二力方向不变,但F1突然增大到F1F,则质点以后( )A继续做匀变速直线运动 B在相等时间内速度的变化一定相等C可能做匀速直线运动 D可能做变加速曲线运动例4一质点在xOy平面内的运动轨迹如图所示,下列判断正确的是( )A若在x方向始终匀速运动,

8、则在y方向先减速后加速运动B若在x方向始终匀速运动,则在y方向先加速后减速运动C若在y方向始终匀速运动,则在x方向一直加速运动D若在y方向始终匀速运动,则在x方向一直减速运动题型 3 小船渡河问题 例5一条宽度为l的河,水流速度为v水,已知船在静水中的速度为v船,那么: 怎样渡河时间最短?最短时间是多少? 若v船 > v水,怎样渡河位移最小?最小位移是多少? 若v船 < v水,怎样渡河船漂下的距离最短?此过程最短航程为多少?例6一小船渡河,河宽d = 180 m,水流速度v1 = 2.5 m/s 若船在静水中的速度为v2 = 5 m/s,求: 欲使船在最短的时间内渡河,船头应朝什么

9、方向?用多长时间?位移是多少? 欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少? 若船在静水中的速度v2 = 1.5 m/s,要使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?题型 4 绳连物体的速度分解问题 例7如图所示,物体A和B质量均为m,且分别与轻绳连接跨过光滑轻质定滑轮,B放在水平面 上,A与悬绳竖直用力F拉B沿水平面向左“匀速”运动过程中,绳对A的拉力的大小是 ( ) A大于mg B总等于mg C一定小于mg D以上三项都不正确例8如图所示,汽车向右沿水平面做匀速直线运动,通过绳子提升重物M若不计绳子质量和绳子与滑轮间的摩擦,则在提升重物的过程中,下列

10、有关判断正确的是 ( )A重物加速上升 B重物减速上升C绳子张力不断减小 D地面对汽车的支持力增大【知能训练】1质量为m的物体,在F1、F2、F3三个共点力的作用下做匀速直线运动,保持F1、F2不变,仅将F3的方向改变90°(大小不变)后,物体可能做 ( ) A加速度大小为 F3/m 的匀变速直线运动 B加速度大小为 F3/m 的匀变速曲线运动 C加速度大小为 F3/m 的匀变速直线运动 D匀速直线运动2甲、乙两船在同一条河流中同时开始渡河,河宽为H,河水流速为v0,划船速度均为v,出发时两船相距 ,甲、乙两船船头均与河岸成60°角,如图所示已知乙船恰好能垂直到达对岸A点,

11、则下列判断正确的是 ( )A甲、乙两船到达对岸的时间不同 Bv = 2v0C两船可能在未到达对岸前相遇 D甲船也在A点靠岸3探月卫星在由地球飞向月球时,沿曲线从M点到N点的飞行过程中,速度逐渐减小在此过程中探月卫星所受合力的方向可能是 ( )4河水的流速与离河岸距离的关系如图甲所示,船在静水中的速度与时间的关系如图所示若要使船以最短的时间渡河,则 ( )A船渡河的最短时间是100 sB船在行驶过程中,船头始终与河岸垂直C船在河水中航行的轨迹是一条直线D船在河水中的最大速度是5 m/s5一轮船船头正对河岸航行,轮船渡河通过的路程及渡河时间在水流速度突然变大的情况下,下列说法正确的是 ( )A路程

12、变长,时间变长 B路程变长,时间不变C路程变短,时间变短 D路程与时间都不变6如图所示,一条小船位于 200 m宽的河正中 A 点处,从这里向下游 100 m处有一危险区,当时水流速度为 4m/s,为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是 ( ) Am/s Bm/s C2m/s D4m/s7一物体运动规律是x = 3t2 m,y = 4t2 m,则下列说法中正确的是 ( )A物体在x轴和y轴方向上都是初速度为零的匀加速直线运动B物体的合运动是初速度为零、加速度为5 m/s2的匀加速直线运动C物体的合运动是初速度为零、加速度为10 m/s2的匀变速曲线运动D物体的合运动是加速

13、度为5 m/s2的曲线运动8图中,套在竖直细杆上的环A由跨过定滑轮的不可伸长的轻绳与重物B相连由于B的质量较大,故在释放B后,A将沿杆上升,当A环上升至与定滑轮的连线处于水平位置时,其上升速度v 1 0,若这时B的速度为v 2,则 ( )Av2 = v 1 Bv 2 > v 1 Cv 2 0 Dv 2 = 09设“歼10”质量为m,以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力)求: 用x表示水平位移、y表示竖直位移,试画出“歼10”的运动轨迹简图,并简述作图理由 若测得当飞机在水平方向的位移为l时

14、,它的上升高度为h.,求“歼10”受到的升力大小 当飞机上升到h高度时飞机的速度大小和方向10如图甲所示,在一端封闭、长约1 m的玻璃管内注满清水,水中放置一个蜡块,将玻璃管的开口端用胶塞塞紧然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动假设从某时刻开始计时,蜡块在玻璃管内每1 s上升的距离都是10 cm,玻璃管向右匀加速平移,每1 s通过的水平位移依次是2.5 cm、7.5 cm、12.5 cm、17.5 cm图乙中,y表示蜡块竖直方向的 位移,x表示蜡块随玻璃管运动的水平位移,t = 0时蜡块位于坐标原点 请在图乙中画出蜡块4 s内的运动轨迹; 求出玻璃管向右平移的加

15、速度; 求t =2 s时蜡块的速度v第2讲 平抛运动【知识概述】1平抛运动 定义:水平方向抛出的物体只在 作用下的运动 性质:平抛运动是加速度为g的 曲线运动,其运动轨迹是 平抛运动的条件: v0 0,沿 ; 只受 作用2平抛运动的实验探究 如图所示,用小锤打击弹性金属片C,金属片C把A球沿水平方向抛出,同时B球松开,自由下落,A、B两球 开始运动观察到两球 落地,多次改变小球距地面的高度和打击力度,重复实验,观察到两球 落地,这说明了小球A在竖直方向上的运动为 运动 如图所示,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑道2与光滑水平板稳接,则将观察到的现象是A、B两个小球在水

16、平面上 ,改变释放点的高度和上面滑道对地的高度,重复实验,A、B两球仍会在水平面上 ,这说明平抛运动在水平方向上的分运动是 运动3平抛运动的研究方法:运动的合成与分解是研究曲线运动的基本方法根据运动的合成与分解,可以把平抛运动分解为水平方向的 运动和竖直方向的 运动,然后研究两分运动的规律,必要时可以再用合成方法进行合成4平抛运动规律:以抛出点为坐标原点,水平初速度v0方向为x轴正方向,竖直向下的方向为y轴正方向,建立如图所示的坐标系,则平抛运动规律为:x轴 vx = _、x = _;y轴 vy = _、y = _;合运动:v = _、s = _;速度方向 tan = _、位移方向 tan =

17、 _、两者关系 _5斜抛运动:可以看成是水平方向速度为v0cos 的 和竖直方向初速度为v0sin 、加速度为g的 ,其中v0为抛出时的速度,为v0与水平方向的夹角【重点解读】1平抛运动的速度变化和两个重要推理 速度的变化规律:水平方向分速度保持vx = v0不变;竖直方向加速度恒为g,速度vy = gt,从抛出点起,每隔t时间: 任意时刻的速度水平分量均等于初速度v0 任意相等时间间隔 t内的速度改变量v的方向均_,大小均为v = vy = _,如图所示任意两时刻的速度与速度变化量v 构成三角形 物体从抛出点O出发,经历时间为t,做平抛运动的轨迹如图所示运动到A处,则 tan = vy/vx

18、 = gt/v0、tan = y/x = gt/2v0,则有: tan = 2 tan BC = sx/22水平射程和飞行时间: 飞行时间 t = _ 仅由 _决定 水平射程 s = _ 与 _ 和 _ 有关3位移的变化规律: 任意相等时间间隔内,水平位移不变,且x = v0t; 任意相等的时间间隔t内,竖直方向上的位移差_,即y =_4类平抛运动: 类平抛运动的受力特点:物体所受合力为_,且与初速度的方向_ 类平抛运动的运动特点:在初速度v0方向做_运动,在合外力方向做初速度为零的_运动,加速度 a = F合/m 类平抛运动的求解方法: 常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运

19、动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此_,互不影响,且与合运动具有_特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为ax、ay,初速度v0分解为vx、vy,然后分别在x、y方向列方程求解【典型例题】题型 1 平抛运动规律的基本应用 例1一名侦察兵躲在战壕里观察敌机的情况,有一架敌机正在沿水平直线向他飞来,当侦察兵观察敌机的视线与水平线间的夹角为30°时,发现敌机丢下一枚炸弹,他在战壕内一直注视着飞机和炸弹的运动情况并计时,他看到炸弹飞过他的头顶后落地立即爆炸,测得从敌机投弹到看到炸弹爆炸的时间为10 s,从看到炸弹爆炸的烟尘到听

20、到爆炸声音之间的时间间隔为1.0 s若已知爆炸声音在空气中的传播速度为340 m/s,重力加速度g取10 m/s2求敌机丢下炸弹时水平飞行速度的大小(忽略炸弹受到的空气阻力)例2如图所示,从地面上方D点沿相同方向水平抛出的三个小球分别击中对面墙上的A、B、C三点,图中O点与D点在同一水平线上,知O、A、B、C四点在同一竖直线上,且OA = AB = BC,三球的水平速度之比vAvBvC为 ( )A: B1: : C:1 D:题型 2 平抛运动与斜面的结合应用 例3如图所示,在倾角 = 37° 的斜面底端的正上方H处,平抛一个物体,该物体落到斜面上的速度方向正好与斜面垂直,求物体抛出时

21、的初速度例4如图所示,AB为斜面,倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B点求: 物体在空中飞行的时间; 从抛出开始经多长时间小球与斜面间的距离最大?最大距离为多少?题型 3 类平抛问题 例5在光滑的水平面内,一质量m = 1 kg 的质点以速度v0 = 10 m/s沿x轴正方向运动,经过原点后受一沿y轴正方向(竖直方向)的恒力F = 15 N作用,直线OA与x轴成=37°,如图所示,曲线为质点的轨迹图(g取10 m/s2,sin 37°= 0.6,cos 37° = 0.8)求: 如果质点的运动轨迹与直线OA相交于P点,质点从O点到P点

22、所经历的时间以及P点的坐标.; 质点经过P点的速度大小例6如图所示,光滑斜面长为a,宽为b,倾角为,一物块A沿斜面左上方顶点P水平射入,恰好从下方顶点Q离开斜面,求入射初速度题型4 “平抛运动模型”的应用 例7在发生的交通事故中,碰撞占了相当大的比例,事故发生时,车体上的部分物体(例如油漆碎片、车灯、玻璃等)会因碰撞而脱离车体,位于车辆上不同高度的两个物体散落在地面上的位置是不同的,如图所示,据此可以测定碰撞瞬间汽车的速度,这对于事故责任的认定具有重要作用,中国汽车驾驶员杂志第163期发表的一篇文章中给出了一个计算碰撞瞬间车辆速度的公式,v = ,在式中l是事故现场散落在路面上的两物体沿公路方

23、向上的水平距离,h1、h2是散落物在车上时的离地高度只要用米尺测量出事故现场的l、h1、h2三个量,根据上述公式就能计算出碰撞瞬间车辆的速度(g取9.8 m/s2)你认为上述公式正确吗?若正确,请说明正确的理由;若不正确,请说明不正确的原因例8如图所示,水平屋顶高H = 5 m,墙高h = 3.2 m,墙到房子的距离L = 3 m,墙外马路宽x = 10 m,小球从房顶水平飞出,落在墙外的马路上,求小球离开房顶时的速度v0(取g =10 m/s2)题型5 平抛运动中的临界问题 例9抛体运动在各类体育运动项目中很常见,如乒乓球运动现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速

24、度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力(设重力加速度为g) 若球在球台边缘O点正上方高度为h1处以速度v1水平发出,落在球台的P1点(如图实线所示),求P1点距O点的距离x1; 若球在O点正上方以速度v2水平发出,恰好在最高点时越过球网落在球台的P2点(如图中虚线所示),求v2的大小; 若球在O点正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3处,求发球点距O点的高度h3例10如图所示,一小球自平台上水平抛出,恰好落在临近平台的一倾角为 = 53°的光滑斜面顶端,并沿光滑斜面下滑而不反弹已知斜面顶端与平台的高度差h = 0.8 m,重力加

25、速度g取10 m/s2,sin53° = 0.8,cos53° = 0.6,求: 小球水平抛出的初速度v0是多少? 斜面顶端与平台边缘的水平距离x是多少? 若斜面顶端高H = 20.8 m,则小球离开平台后经多长时间t到达斜面底端?【知能训练】1从一定高度以初速度v0水平抛出一个物体,物体落地时速度为v,则物体从抛出到落地所用的时间为 ( ) A B C D2在同一平台上的O点抛出的3个物体,做平抛运动的轨迹如图所示,则3个物体做平抛运动的初速度vA、vB、vC 的关系及落地时间tA、tB、tC的关系分别是 ( ) AvA > vB > vC,tA > t

26、B > tC BvA = vB = vC,tA = tB = tC CvA < vB < vC,tA > tB > tC DvA < vB < vC,tA < tB < tC3如图所示,某一小球以v0 =10 m/s的速度水平抛出,在落地之前经过空中A、B两点,在A点小球速度方向与水平方向的夹角为45°,在B点小球速度方向与水平方向的夹角为60°(空气阻力忽略不计,g取10 m/s2)以下判断中正确的是 ( )A小球经过A、B两点间的时间t = (-1) s B小球经过A、B两点间的时间t =s CA、B两点间的高度差h

27、 =10 m DA、B两点间的高度差h =15 m4如图所示,在一次空地演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截设拦截系统与飞机的水平距离为x,若拦截成功,不计空气阻力,则v1、v2的关系应满足 ( )Av1 = v2 Bv1 =v2 Cv1 = v2 Dv1 =v25一个人水平抛出一小球,球离手时的初速度为v0,落地时的速度是vt,空气阻力忽略不计,下列哪个图象正确表示了速度矢量变化的过程 ( )6如图所示,跳台滑雪是一项勇敢者的运动,它是在依靠山体建造的跳台进行滑行比赛时运动员要穿着专业用的滑雪板,不带雪杖

28、在水平助滑路A上获得初速度v0后高速水平飞出,在空中飞行一段距离后在B点着陆如果在运动员飞行时,经过时间t后的速度的大小为vt,那么,经过时间2t(运动员仍在空中飞行)后的速度大小为 ( )Av0 + 2gt Bvt+gt C D7如图所示,水平地面上有P、Q两点,A点和B点分别在P点和Q点的正上方,距离地面高度分别为h1和h2某时刻在A点以速度v1水平抛出一小球,经时间t后又从B点以速度v2水平抛出另一球,结果两球同时落在P、Q连线上的O点,则有 ( )APO:OQ = v1h1v2h2 BPO:OQ = v1h12v2h22 CPO:OQ = v1v2 Dh1 h2 = gt28如图所示,

29、一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上物体与斜面接触时速度与水平方向的夹角满足 ( ) Atan = sin Btan = cosCtan = tan Dtan = 2tan9如图所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度va和vb沿水平方向抛出,经过时间ta和tb后落到与两抛出点水平距离相等的P点,若不计空气阻力,下列关系式正确的是 ( )Atatb,vavb Btatb,vavb Ctatb,vavb Dtatb,vavb10在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地若不计空气阻力,则 ( )A垒球落地时瞬时速度的大小仅由

30、初速度决定B垒球落地时瞬时速度的方向仅由击球点离地面的高度决定C垒球在空中运动的水平位移仅由初速度决定D垒球在空中运动的时间仅由击球点离地面的高度决定11质点从同一高度水平抛出,不计空气阻力,下列说法正确的是 ( )A质量越大,水平位移越大 B初速度越大,落地时竖直方向速度越大C初速度越大,空中运动时间越长 D初速度越大,落地速度越大12某同学对着墙壁练习打网球,假定球在墙面上以25 m/s的速度沿水平方向反弹,落地点到墙面的距离在10 m至15 m之间,忽略空气阻力,取g10 m/s2,球在墙面上反弹点的高度范围是( )A0.8 m至1.8 m B0.8 m至1.6 m C1.0 m至1.6

31、 m D1.0 m至1.8 m13如图所示,某同学为了找出平抛运动的物体初速度之间的关系,用一个小球在O点对准前方的一块竖直放置的挡板,O与A在同一高度,小球的水平初速度分别是v1、v2、v3,打在挡板上的位置分别是B、C、D,且ABBCCD = 135,则v1、v2、v3之间的正确关系是 ( )Av1v2v3 = 321 Bv1v2v3 = 531Cv1v2v3 = 632 Dv1v2v3 = 94114如图所示,从倾角为的斜面上的M点水平抛出一个小球,小球的初速度为v0,最后小球落在斜面上的N点,则(重力加速度为g) ( )A可求M、N之间的距离B可求小球落到N点时速度的大小和方向C可求小

32、球到达N点时的动能D可以断定,当小球速度方向与斜面平行时,小球与斜面间的距离最大15如图所示,高为h = 1.25 m的平台上,覆盖一层薄冰现有一质量为60 kg的滑雪爱好者,以一定的初速度v向平台边缘滑去,着地时速度的方向与水平地面的夹角为45°(重力加速度g取10 m/s2)由此可知下列各项中错误的是( )A滑雪者离开平台边缘时速度的大小是5.0 m/sB滑雪者着地点到平台边缘的水平距离是2.5 mC滑雪者在空中运动的时间为0.5 sD着地时滑雪者重力做功的瞬时功率是300 W16物体做平抛运动,在它落地前的1 s内它的速度与水平方向夹角由30°变成60°,g

33、 = 10 m/s2求: 平抛运动的初速度v0; 平抛运动的时间; 平抛时的高度17如图所示,从H = 45 m高处水平抛出的小球,除受重力外,还受到水平风力作用,假设风力大小恒为小球重力的0.2倍,g取10 m/s2问: 有水平风力与无风时相比较,小球在空中的飞行时间是否相同?如不相同,说明理由;如果相同,求出这段时间? 为使小球能垂直于地面着地,水平抛出的初速度v0为多少?18如图所示,在距地面高为H = 45 m处,有一小球A以初速度v0 = 10 m/s水平抛出,与此同时,在A的正下方有一物块B也以相同的初速度v0同方向滑出,B与地面间的动摩擦因数为 = 0.5A、B均可看作质点,空气

34、阻力不计,重力加速度g取10 m/s2,求: A球从抛出到落地的时间和这段时间内的水平位移; A球落地时,A、B之间的距离19如图所示,射击枪水平放置,射击枪与目标靶中心位于离地面足够高的同一水平线上,枪口与目标靶之间的距离s100 m,子弹射出的水平速度v = 200 m/s,子弹从枪口射出的瞬间目标靶由静止开始释放,不计空气阻力,取重力加速度g为10 m/s2,求: 从子弹由枪口射出开始计时,经多长时间子弹击中目标靶? 目标靶由静止开始释放到被子弹击中,下落的距离h为多少?v0ABCD20如图,内壁光滑的薄壁圆钢管竖直固定在水平地面上钢管的高为h = 5.0m,横截面直径为d = 2.0m

35、一只小球从钢管顶端的A点以初速度v0沿钢管顶面圆的直径方向抛出,运动过程中依次跟钢管内壁的B、C两点相碰(碰撞中没有动能损失,碰撞时间极短可以忽略不计),然后恰好落在底面圆的圆心D处求:(取g = 10m/s2) 小球从由A点抛出到落在D点所经历的时间t =? A、C两点间的距离L=? hHx发球线v0网发球线x21如图为一网球场长度示意图,球网高为 h = 0.9m,发球线离网的距离为 x =6.4m,某一运动员在一次击球时,击球点刚好在发球线上方 H = 1.25m高处,设击球后瞬间球的速度大小为v0 = 32m/s,方向水平且垂直于网,试通过计算说明网球能否过网?若过网,试求网球的直接落

36、地点离对方发球线的距离L?(不计空气阻力,重力加速度g取10m/s2)22如图,ABC和ABD为两个光滑固定轨道,A、B、E在同一水平面,C、D、E在同一竖直线上,D点距水平面的高度h,C点高度为2h,一滑块从A点以初速度 v0分别沿两轨道滑行到C或D处后水平抛出(1)求滑块落到水平面时,落点与E点间的距离 sC和 sD(2)为实现sC < sD,v0 应满足什么条件?第3讲 圆周运动【知识概述】1描述圆周运动的物理量物理量物理意义定义和公式方向和单位线速度描述物体做圆周运动的_物体沿圆周通过的弧长与所用时间的比值,v = _方向:_单位:m/s角速度描述物体绕圆心 _ 的快慢运动物体与

37、圆心连线扫过的角的弧度数与所用时间的比值, = _方向:(不讨论)单位:_周期和转速 周期是物体沿圆周运动 的时间(T) 转速是物体单位时间内转过的圈数(n)T = _;T = _周期单位:_转速单位:_向心加速度描述线速度变化快慢的物理量an = _方向:_单位:m/s2相互关系v = r = 2r/T an = 2r = _= _2向心力 作用效果:产生向心加速度,只改变速度的 ,不改变速度的大小 大小:Fn = man = = m2r = . 方向:总是沿半径方向指向 ,时刻在改变,即向心力是一个变力 来源:向心力可以由一个力提供,也可以由 提供,甚至可以由 提供,因此向心力的来源要根据

38、物体受力的实际情况判定3离心运动和向心运动 离心运动: 定义:做 的物体,在所受合外力突然消失或不足以提供圆周运动 的情况下,就做逐渐远离圆心的运动 本质:做圆周运动的物体,由于本身的惯性,总有沿着 飞出去的倾向 受力特点:当F = 时,物体做匀速圆周运动;当F = 0时,物体沿 飞出;当F < 时,物体逐渐远离圆心(F为实际提供的向心力,如图所示) 向心运动:当提供向心力的合外力大于做圆周运动所需向心力时,即F > mr2,物体渐渐向 ,如图所示【重点解读】1匀速圆周运动和非匀速圆周运动的比较匀速圆周运动非匀速圆周运动运动性质线速度大小不变而方向时刻变化的变速曲线运动,是加速度

39、不变而 时刻变化的变加速曲线运动;做匀速圆周运动的物体,其运动周期T、角速度都 线速度大小和方向都变化的变速曲线运动,是加速度 也都变化的变加速曲线运动;做非匀速圆周运动的物体,其角速度发生 ,周期T也可能发生变化加速度加速度方向与线速度方向垂直,即只存在_加速度,没有切向加速度由于速度的大小、方向均变,所以不仅存在向心加速度且存在 加速度,合加速度的方向一般不指向圆心向心力物体所受的_提供向心力切线方向:F = ma法线方向:Fn = man2圆周运动中的动力学问题分析 向心力的来源:向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受

40、力分析中要避免再另外添加一个向心力 向心力的确定: 确定圆周运动的轨道所在的平面,确定圆心的位置; 分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力3解决圆周运动问题的主要步骤: 审清题意,确定研究对象; 分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等; 分析物体的受力情况,画出受力示意图,确定向心力的来源; 据牛顿运动定律及向心力公式列方程; 求解、讨论4竖直平面内的圆周运动问题分析 绳球或内轨道模型,如图所示,没有物体支撑的小球,在竖直平面内做变速圆周运动过最高点的情况 临界条件:小球到达最高点时绳子的拉力(或轨道的压力)刚好为零,小球的重力提供

41、其圆周运动的向心力,即mg = v临界2/r,式中的v临界 是小球通过最高点的最小速度,通常叫临界速度,v临界 = _; 通过最高点的条件:v _v临界当v > v临界 时,绳、轨道对球分别产生拉力F、压力FN; 不能通过最高点的条件:v _v临界(实际上球还没有到最高点就脱离了轨道) 如图所示,有物体支撑的小球在竖直平面内做变速圆周运动过最高点的情况临界条件:由于硬杆或管壁的支撑作用,小球恰能到达最高点的临界速度是v临界 _, 图(a)所示的小球过最高点时,轻杆对小球的弹力情况见下表:小球速度弹力的方向弹力的大小v = 0轻杆对小球有竖直_的支持力 FN = mgv < 杆对小球

42、的支持力的方向竖直_ 大小随速度的增大而减小,FN =_,即0 < FN < mg v = 无弹力 FN = _ v > 杆对小球有指向圆心的拉力 大小随速度的增大而增大,FN = _图(b)所示的小球通过最高点时,光滑管对小球的弹力情况与杆类似判断小球经过最高点时,轻杆提供的力是拉力还是支持力,还可以采取下面的方法:先假设为拉力F,根据牛顿第二定律列方程求解,若求得F > 0,说明此时轻杆提供拉力;若求得F < 0,说明此时轻杆提供支持力,其大小与所求得的F的大小相等、方向相反【典型例题】题型 1 涉及圆周运动传动方式分析 例1如图所示,轮O1、O3固定在一转轴

43、上,轮O1、O2用皮带连接且不打滑在O1、O2、O3三个轮的边缘各取一点A、B、C,已知三个轮的半径比r1r2r3 = 211求: A、B、C三点的线速度大小之比vAvBvC; A、B、C三点的角速度之比ABC; A、B、C三点的向心加速度大小之比aAaBaC例2如图所示,a、b是地球表面上不同纬度上的两个点,如果把地球看作是一个球体,a、b两点随地球自转做匀速圆周运动,这两个点具有大小相同的 ( )A线速度 B角速度 C加速度 D轨道半径题型 2 圆周运动的动力学问题 例3铁路转弯处的弯道半径r是根据地形决定的弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还取决于火车在弯道上的

44、行驶速率下列表格中是铁路设计人员技术手册中弯道半径r及与之对应的轨道的高度差h轨道半径r/m660330220165132110内外轨高度差h/mm50100150200250300 根据表中数据,试导出h和r关系的表达式,并求出当r = 440 m时,h的设计值 铁路建成后,火车通过弯道时,为保证绝对安全,要求内外轨道均不向车轮施加侧向压力,又已知我国铁路内外轨的间距设计值为L = 1 435 mm,结合表中数据,算出我国火车的转弯速率v(以km/h为单位,结果取整数当很小时,tan sin ) 为了提高运输能力,国家对铁路不断进行提速,这就要求火车转弯速率也需要提高请根据上述计算原理和上述

45、表格分析提速时应采取怎样的有效措施例4如图所示,长度为l的细绳上端固定在天花板上O点,下端拴着质量为m的小球当把细绳拉直时,细绳与竖直线夹角为 = 60°,此时小球静止于光滑的水平面上 当球以角速度1 = 做圆锥摆运动时,细绳的张力FT为多大?水平面受到的压力FN是多大? 当球以角速度1 = 做圆锥摆运动时,细绳的张力FT 为多大?水平面受到的压力FN 是多大?题型 3 竖直面内的圆周运动问题 例5如图所示,半径为R、内径很小的光滑半圆管竖直放置两个质量均为m的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为0.75 m

46、g求a、b两球落地点间的距离例6如图所示,LMPQ是光滑轨道,LM水平,长为5.0 m,MPQ是一半径为R = 1.6 m的半圆,QOM在同一竖直线上,在恒力F作用下,质量m = 1 kg的物体A由静止开始运动,当达到M时立即停止用力欲使A刚好能通过Q点,则力F大小为多少?(g取10 m/s2)题型 4 圆周运动的临界问题 例7如图所示,质量为m的小球置于方形的光滑盒子中,盒子的边长略大于小球的直径某同学拿着该盒子在竖直平面内以O点为圆心做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计求: 若要使盒子运动到最高点时与小球之间恰好无作用力,则该同学拿着盒子做匀速圆周运动的周期为多少? 若该同学拿着盒子以第 问中周期的 1/2做匀速圆周运动,则当盒子运动到如图所 示(球心与O点位于同一水平面上)时,小球对盒子的哪些面有作用力,作用力大小分别为多少?例8如图所示,两绳系一个质量为m = 0.1 kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长L = 2 m,两绳都拉直时与轴夹角分别为30°和45°,问球的角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论