版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、研究 从今天开始从今天开始, ,我们将进一步来体会向量这一工我们将进一步来体会向量这一工具在立体几何中的应用具在立体几何中的应用. .立体几何问题立体几何问题( (研究的基本对象是点、直线、平面以及由它们研究的基本对象是点、直线、平面以及由它们组成的空间图形组成的空间图形) )。,使,实数对共面的充要条件是存在与向量不共线,则向量如果两个向量byaxpyx,p,baba共线向量定理共线向量定理:复习:复习:共面向量定理共面向量定理:0/aa b babb 对空间任意两个向量 、 (),的充要条件是存在实数 ,使 。思考思考1:1、如何确定一个点在空间的位置?、如何确定一个点在空间的位置?2、在
2、空间中给一个定点、在空间中给一个定点A和一个定方向(向量),和一个定方向(向量),能确定一条直线在空间的位置吗?能确定一条直线在空间的位置吗?3、给一个定点和两个定方向(向量),能确定一、给一个定点和两个定方向(向量),能确定一个平面在空间的位置吗?个平面在空间的位置吗?4、给一个定点和一个定方向(向量),能确定一、给一个定点和一个定方向(向量),能确定一个平面在空间的位置吗?个平面在空间的位置吗?OPOPOPP 在空间中,我们取一定点 作为基点,那么空间中任意一点 的位置就可以用向量来表示。我们把向量称为点 的位置向量。OP一、点的位置向量一、点的位置向量aABP二、直线的向量参数方程二、直
3、线的向量参数方程 对于对于直线直线 l上上的任一的任一点点P, , 存在实数存在实数t使得使得 (1,)OP OA taOPxOA yOB xy 此方程称为此方程称为直线的向量参数方程。直线的向量参数方程。这这样点样点A和向量和向量 不仅可以确定直线不仅可以确定直线 l的的位置,还可以具体写出位置,还可以具体写出l上的任意一点。上的任意一点。a l1 -2 321 -3ABAB例1:已知两点(, , ),( , , ),求 , 连线与 三坐标平面的交点。517 10,0)334 4( ,),(110AByozCyz分析:设连线与平面的交点为( , , ),1OCt OAtOB 由()得1111
4、01(1,-2,3)(2,1,-3)0(1-23 3-6yzttyzttt( , , )()( , , ),)5 9OC(0, , )12 3212112ABPQOPQA QBQ 练习:已知两点(, , ),( , , ),(, , ),点 在上运动,求当取得最小值时,点 的坐标。 Pb a OOPxayb 除此之外除此之外, 还可以用垂直于平面的直线的方向向还可以用垂直于平面的直线的方向向量量(这个这个平面的法向量平面的法向量)表示空间中平面的位置表示空间中平面的位置.n 这样,点这样,点O与向量与向量 不仅可以确定平面不仅可以确定平面 的位的位置,还可以具体表示出置,还可以具体表示出 内的
5、任意一点。内的任意一点。a b 、三、平面的法向量三、平面的法向量平面的法向量:平面的法向量:如果表示向量如果表示向量 的有向线段所在的有向线段所在直线垂直于平面直线垂直于平面 ,则称这个向量垂直于平,则称这个向量垂直于平面面 ,记作记作 ,如果,如果 ,那么向量,那么向量 叫叫做做平面平面 的的法向量法向量. n n n n 几点注意:几点注意:1.法向量一定是非零向量法向量一定是非零向量;2.一个平面的所有法向量都互相平行一个平面的所有法向量都互相平行;问题:如何求平面的法向量?),() 1 (zyxn 设出平面的法向量为),(),()2(222111cbabcbaa向量的坐标两个不共线的
6、找出(求出)平面内的00,) 3(bnanzyx方程组的关于根据法向量的定义建立个解,即得法向量。解方程组,取其中的一)4(2,2,1),(4,5,3),ABACABC 例2:已知求平面的 单位法向量。 因为方向向量与法向量可以确定直线和平面的因为方向向量与法向量可以确定直线和平面的位置,所以我们应该可以利用直线的方向向量与平位置,所以我们应该可以利用直线的方向向量与平面的法向量表示空间直线、平面间的面的法向量表示空间直线、平面间的平行、垂直、平行、垂直、夹角夹角等位置关系等位置关系.你能用直线的方向向量表示空间两你能用直线的方向向量表示空间两直线平行、垂直的位置关系以及它们之间的夹角吗?直线
7、平行、垂直的位置关系以及它们之间的夹角吗?你能用平面的法向量表示空间两平面平行、垂直的你能用平面的法向量表示空间两平面平行、垂直的位置关系以及它们二面角的大小吗?位置关系以及它们二面角的大小吗?思考思考2:线线面面平平行行 面面面面平平行行 四、平行关系:四、平行关系:111222(,),(,),laa b cua b c设直线 的方向向量为平面 的法向量为则五、垂直关系:五、垂直关系:111222(,),(,),aa b cua b c若则巩固性训练11.设设 分别是直线分别是直线l1,l2的方向向量的方向向量,根据下根据下 列条件列条件,判断判断l1,l2的位置关系的位置关系.ba,)3,
8、 0 , 0(),1 , 0 , 0()3()2 , 3 , 2(),2, 2 , 1 ()2()6, 3, 6(),2, 1, 2() 1 (bababa平行平行垂直垂直平行平行巩固性训练22.设设 分别是平面分别是平面,的法向量的法向量,根据根据 下列条件下列条件,判断判断,的位置关系的位置关系.vu,)4, 1 , 3(),5 , 3, 2()3()4 , 4, 2(),2, 2 , 1 ()2()4 , 4, 6(),5 , 2 , 2() 1 (vuvuvu垂直垂直平行平行相交相交巩固性训练31、设平面、设平面 的法向量为的法向量为(1,2,-2),平面平面 的法向量为的法向量为(-
9、2,-4,k),若若 ,则,则k= ;若;若 则则 k= 。2、已知、已知 ,且,且 的方向向量为的方向向量为(2,m,1),平面,平面的法向量为的法向量为(1,1/2,2),则则m= .3、若、若 的方向向量为的方向向量为(2,1,m),平面平面 的法向量为的法向量为(1,1/2,2),且且 ,则,则m= ./llll例例3、用、用向量法向量法证明:一条直线与一个平面内两条相证明:一条直线与一个平面内两条相交直线都垂直,则该直线与此平面垂直。交直线都垂直,则该直线与此平面垂直。已知:直线已知:直线m,n是平面是平面 内的任意两条相交直线,内的任意两条相交直线,且且,.lm ln求证:求证:.l直线直线l与平面与平面 所成的所成的角为角为( (02 ) ), ,sina ua u ; 六、夹角:六、夹角:lmml /ba
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度常州二手房过户税费减免与流程简化服务协议3篇
- 2025年度科技园区场地租赁合作协议书6篇
- 2024年度食品行业知识产权保护与保密协议3篇
- 2025年度智能床垫定制与采购协议合同模板下载3篇
- 上海二手房交易标准协议示例版A版
- 专家资质聘用合作合同(2024年度版)版B版
- 专业搬迁服务协议:仓储搬迁及物流服务协议版B版
- 企业培训之人际关系培训
- 职业学院申诉受理登记表
- 福建省南平市武夷山第三中学2020年高三数学理上学期期末试卷含解析
- 2024年考研(英语一)真题及参考答案
- 2024年质量工作总结(3篇)
- 山东省济南市2023-2024学年高二上学期期末考试物理试题 附答案
- 9《小水滴的诉说》 (说课稿)部编版道德与法治二年级上册
- 幼儿园交通安全一校一策方案
- 2023年海南公务员考试申论试题(C卷)
- 保险合作框架协议模板
- 委托销售合同代销合同范例
- 电信基站UPS系统维护与改造方案
- 居家养老服务人员考核管理制度
- 装配式围挡施工方案
评论
0/150
提交评论