圆锥曲线解题技巧(附例题)汇编_第1页
圆锥曲线解题技巧(附例题)汇编_第2页
圆锥曲线解题技巧(附例题)汇编_第3页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆锥曲线解题技巧及例题汇编1、定义法(1 )椭圆有两种定义。第一定义中,m+r2=2a。第二定义中,ri=edi2=ed2。(2) 双曲线有两种定义。第一定义中,几-r2 =2a,当ri>r2时,注意 匕的最小值为c-a:第二定义中,ri =edi,r2=ed2,尤其应注意第二定义的应用,常常将半径与“点到准线距离”互相转化。(3) 抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直 接简明。2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问 题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥

2、曲线问题的重点方法之一,尤其是 弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点 A(Xi,yi),B(x2,y2),弦AB中点为M(xo,yo),将点A、B坐标代入圆锥曲线方程,作差后,产生 弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:2 2(1) X2 2 =i(a b 0)与直线相交于 A、B,设弦AB中点为M(Xo,yo),则有 笃冷k=0。 a ba

3、b2 2(2) 务-与=i(a 0,b 0)与直线I相交于A、B,设弦AB中点为M(xo,yo)则有 马一誇k=0 a ba b(3) y2=2px ( p>0)与直线 I 相交于 A、B 设弦 AB 中点为 M(X0,y。),则有 2y°k=2p,即 yok=p.【典型例题】例1、(1)抛物线 C:y2=4x上一点P到点 A(3,4 - 2 )与到准线的距离和最小,则点P的坐标为1H6(2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 分析:(1)A在抛物线外,如图,连 PF,贝y PH| =|PF,因而易发现, 当A、P、F三点共线时

4、,距离和最小。(2) B在抛物线内,如图,作 QR丄I交于R,则当B、Q、R三点共线时, 距离和最小。解:(1) (2,2 )连PF,当A、P、F三点共线时,AP + PH| =|AP + PF最小,此时AF的方程为y =处2 _0仪_1) 3-1即y=2 .2 (x-1),代入y2=4x得P(2,- 2 ),(注:另一交点为(丄,“2),它为直线AF与抛物线的另一交点,2舍去)1(2) ( ,1 )4过Q作QR丄I交于R,当B、Q、R三点共线时,BQ QF| |BQ - QR最小,此时 Q点的纵坐标为111,代入 y2=4x 得 x=,二 Q( 1)44点评:这是利用定义将“点点距离”与“点

5、线距离”互相转化的一个典型例题,请仔细体会。2 2例2、F是椭圆- y 1的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点。yA J卜* JHF0fFx43(1) PA + PF的最小值为(2) PA +2PF的最小值为分析:PF为椭圆的一个焦半径,常需将另一焦半径PF 或准线作出来考 虑问题。解:(1) 4- , 5设另一焦点为F ,则F (-1,0)连A F ,PFPA +|PF =|PA +2a - PF ' =2a -( PF ' - PA) Z2a-=4-75当P是F 'A的延长线与椭圆的交点时,PA +1 PF取得最小值为4-J5。(2) 3ccc1作

6、出右准线 I,作 PH 丄 I 交于 H,因 a2=4, b2=3 , c2=1,a=2, c=1, e=,21PF| =_|PH ,即2 PF| = PH PA +2PF| = PA + PH2当A、P、H三点共线时,其和最小,最小值为一 xA =4 -1 =3c2222例3、动圆M与圆G:(x+1) +y =36内切,与圆C2:(x-1) +y =4外切,求圆心M的轨迹方程。C M D 0B-分析:作图时,要注意相切时的“图形特征”:两个圆心与切点这三点 共线(如图中的 A、M、C共线,B、D、M共线)。列式的主要途径是动 圆的“半径等于半径”(如图中的 MC =|MD )。解:如图,MC

7、 = MD , AC - MA = MB - DB即6 - MA =|MB -2MA + MB =8(*)2 2点M的轨迹为椭圆,2a=8, a=4, c=1 , b2=l5轨迹方程为 =11615点评:得到方程(* )后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出.(x 1)2 - y2 -(x1)2 - y2 =4,再移项,平方,相当于将椭圆标准方程推导了一遍,较繁琐!3例 4、 ABC 中,B(-5,0),C(5,0),且 sin C-s in B=si nA,求点 A 的轨迹方程。5分析:由于sinA、sinB、sinC的关系为一次齐次式,两边乘以2R (R为外接

8、圆半径),可转化为边长的关系。-2RsinA解:si nC-si nB= 3 si nA2Rsi nC-2Rsi nB= 35 AB即AB AC =6(*)点 A的轨迹为双曲线的右支(去掉顶点)/ 2a=6, 2c=10-a=3,c=5,b=4所求轨迹方程为2 2x y d1(x>3)916点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。A(X1,X12), B(X2, X22),又设AB中点为M(xoyo)用弦长公式及中点公式得出y。关于X。的函数表达式,再用函数思想求出最

9、短距离。分析:(1 )可直接利用抛物线设点,如设(2) M到x轴的距离是一种“点线距离”,可先考虑 M到准线的距离,想到用定义法。2 2解法一: 设 A(X1, X1 ), B(X2, X2), AB 中点 M(xo, yo)(X1 -X2)2(X12 -x;)2 =9X1 *X2 =2x。2丄 2cX1 十 X2 =2yo2 2由得(X1-X2) 1+(X 1+X2)=9即(X1+X2)2-4X1X2 1+(X 1+X2)2=9由、得 2x 1 X2=(2x o)2-2yo =4x o2-2y 0代入得 (2xo)2-(8xo2-4yo) 1+(2xo)2=9294yo -4xo2 ,1 +

10、4xg29294yo =4Xo2 = (4Xo 1)214Xo4Xo +1> 2 9 一 1 = 5,yo 亠54当 4xo2+1=3725<2 5即x-T时,(yo)min蔦此时M(-亍J法二:如图,2|MM2 =|AA2+|BB2 =|AF|+|BF| 曰 AB =313AV,yMBr ./A10MB1A曲庄即 MM 1 +_启-,42MM 1 >-,当AB经过焦点F时取得最小值。45 M到x轴的最短距离为4点评:解法一是列出方程组,利用整体消元思想消X1, X2,从而形成yo关于xo的函数,这是一种“设而不求”的方法。而解法二充分利用了抛物线的定义,巧妙地将中点 M到x

11、轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A、B到准线的距离和,结合定义与三角形中两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验 证AB是否能经过焦点F,而且点M的坐标也不能直接得出。2 2例6、已知椭圆 D 1(2乞m乞5)过其左焦点且斜率为1的直线与椭圆及准线从左到右依次m m T变于 A、B、C、D、设 f(m)= | AB CD| , (1)求 f(m), ( 2)求 f(m)的最值。分析:此题初看很复杂,对f(m)的结构不知如何运算,因A、B来源于“不同系统” ,A在准线上,B在椭圆上,同样 C在椭圆上

12、,D在准线上,可见直接求解较繁,将这些线段“投影”到x轴上,立即可得防f (m) = (Xb - Xa)V2-(Xd - Xc)V2 = V2|(Xb - Xa)-(Xd - Xc)|=-2(XB '忑)- (Xa ' Xd)-2|(Xb Xc)此时问题已明朗化,只需用韦达定理即可。2 2解:(1)椭圆1 中,a2=m, b2=m-1,c2=1,左焦点 Fi(-1,0)m m -1则 BC:y=x+1,代入椭圆方程即(m-1)x2+my2-m(m-1)=0得(m-1)x2+m(x+1) 2-m2+m=022(2m-1)x +2mx+2m-m =0设 B(x1,y1),C(X2,

13、y2),则 X1 +x2=-(2 一 m 一 5)2m 1f(m) =|AB -CD| = V2|(Xb -Xa)-% -Xc)(2) f(m)匸22m-1 ,2( 1 )2m-12m-1当 m=5 时,仃、10血f(m)min9r当m=2时,4 - 2f (m)max3点评:此题因最终需求Xb Xc,而BC斜率已知为1,故可也用“点差法”设BC 中点为 M(xo,yo),通过将 B、C坐标代入作差,得yk = 0,将 yo=xo+1 , k=1 代入得0 = 0 ,m m-1m m1X0 =m2m -1,可见XbXc2m2m 1当然,解本题的关键在于对f (m) = | AB - CD|的认

14、识,通过线段在x轴的“投影”发现f (m) = XB +xC是解此题的要点。【同步练习】2 21、已知:F1,2是双曲线x_ y =1的左、右焦点,过F1作直线交双曲线左支于点a b ABF?的周长为(A、4aB、4a+mC、 4a+2mD、4a-m2、若点P到点F(4,0)的距离比它到直线 x+5=0的距离小1贝U P点的轨迹方程是A、y2=-16x2=-32x 2 _C、 y =16xD、 y2=32x3、已知 ABC的三边AB、BC、AC的长依次成等差数列,且 AB A | AC,点B、C的坐标分别为(-1 , 0),(1 , 0),则顶点A的轨迹方程是(2 2xy143= 1(x 0)

15、2 2x-1(x : 0)432 2x 丄yD、43= 1(x0且 y = 0)4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是a、(x 一2 y2=9)B、(x 2)2 y2x2(y£221 2D、x (y )22 x 已知双曲线2=1上一点916抛物线y=2x2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 已知抛物线y2=2x的弦AB所在直线过定点 p(-2, 0),则弦AB中点的轨迹方程是M的横坐标为4,则点M到左焦点的距离是2 2&过双曲线x -y =4的焦点且平行于虚轴的弦长为 9、 直线y=kx+1与双曲线 x -y =1的交点个

16、数只有一个,则k=2 210、设点P是椭圆 = 1上的动点,F- F2是椭圆的两个焦点,求 sin / F1pf2的最大值。5911、已知椭圆的中心在原点,焦点在x轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线I与此椭圆相交于 A、B两点,且AB中点M为(-2 , 1), AB =4. 3,求直线I的方程和椭 圆方程。12、已知直线I和双曲线2x2a2=1(a0,b - 0)及其渐近线的交点从左到右依次为b2A、B、C、D o求证:AB = CD【参考答案】1、CAF2 - AF1 =2a, BF2 - BR =2a ,AF2| + BF2 - AB =4a, AF2| +

17、|BF2 + AB = 4a + 2m,选 C2、C点P到F与到x+4=0等距离,P点轨迹为抛物线 p=8开口向右,则方程为 y2=16x,选C3、D/ AB 十 AC| = 2 汉2,且 AB >|AC点A的轨迹为椭圆在y轴右方的部分、又 A、B、C三点不共线,即y丰0,故选D。4、A设中心为(x, y),则另一焦点为(2x-1 , 2y),则原点到两焦点距离和为 4得1 . (21)2 (2y)24 ,(x)2y2又 c<a,. . (x -1)2y2 : 2(x-1)2+y2<4 ,由,得 XM -1,选 A2999295 29左准线为x=- , M到左准线距离为 d

18、=4 (-)= 一 则M到左焦点的距离为 ed =-5553 5293116、x (y )22设弦为 AB , A(x i, yi), B(x2, Y2)AB 中点为(x, y),则 yi=2x/, Y2=2x22, Yi-y2=2(xi2-X22)= 2(x-|x2) 2=2 2x , x = 1x _ x?21 111将x 代入y=2x2得y,轨迹方程是x (y> )2 22 227、y =x+2(x>2)设 A(X1, y) B(X2,2), AB 中点 M(x , y),则2y1=2X1, y; =2X2, y: -y; =2(X1 X2), 空Xr _X2(y1 y;)

19、= 2kAB = k|MP-2 y = 2,即 y;=x+2x 2又弦中点在已知抛物线内P,即 y <2x,即 x+2<2x , x>28、4a =b = 4, C = 8, c = 2 2,令 x = 22 代入方程得 8-y;=42 y =4, y= ± 2,弦长为 49、一、2 或 _1y=kx+1 代入 x;-y;=1 得 x;-(kx+1) 2-1=02 2 (1-k )x -2kx-2=01 k2 # 0l 厂得 4k2+8(1-k;)=0, k= ± 屁A =0 1-k2=0 得 k= ± 122210、解:a =25 , b =9 , c =16设 F1、F;为左、右焦点,贝U F1(-4 , 0)F;(4, 0)设 PF1 利,PF;二 r;, RF; “ ” 则J卄2 =2日j2 +r2; -2订2 cosO =(2c);2 ;-得 2r12(1+cos 0 )=4b2 24b _2b 1+COS 0 =2r1r;r1r; n+r; - 2 rj;, r1 r2 的最大值为a; 1+cos 0的最小值为2b;2 ,a即 1+cos 077-cosB,0 ": v:二-arccos 则当'=时,sinB取值得最大值1,25252即sin / Fi PF2的最大值为1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论