植物生理练习题2培训讲学_第1页
植物生理练习题2培训讲学_第2页
植物生理练习题2培训讲学_第3页
植物生理练习题2培训讲学_第4页
植物生理练习题2培训讲学_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、植 物 生 理 练 习 题 2精品资料光合作用I :植物对光能的吸收与转换1. 叶绿素蛋白是如何进行分类的,它们各有何特点?如果按色素蛋白所含的叶绿素分类,则主要有两类叶绿素蛋白复合体:叶绿素a蛋白复合体和叶绿素 a/b蛋白复合体。这些蛋白复合体上还有胡萝卜素或叶黄素,主要起保护 光合系统的作用。1 叶绿素a蛋白复合体叶绿素a蛋白复合体具有下列的一些共同性质: 结合叶绿素a,含有-胡萝卜素; 为高疏水性蛋白,与反应中心紧密连系; 它们的分子量一般高于叶绿素a/b复合体; 它们都是叶绿体基因编码的蛋白(而 a/b复合体通常为核编码)。2叶绿素a/b蛋白复合体叶绿素a/b蛋白复合体又称聚光复合体或

2、捕光色素蛋白复合体(light harvestingcomplex,简称LHC,它是类囊体膜上最丰富的蛋白复合体,LHC结合了叶绿素a总量的50%和所有的叶绿素 b,LHC不参与光化学反应,只起光能传递的作用。叶绿素a/b蛋白复合体也具有一些共同的性质: 结合叶绿素a和b; 分子量在2030kDa,并且由核基因编码; 光诱导合成,在黑暗中生长的植物缺失a/b复合体,在光下合成; 叶绿素a/b蛋白复合体具有某些共同的氨基酸序列,用免疫方法证明,一种a/b蛋白复合体的抗体可以与其他a/b蛋白复合体有交叉反应,说明它们在结构上有共性,基因序列分析的结果也表明它们具有某些同源的序列。2. 类囊体膜上的

3、蛋白复合体的分布有何特点,这样的分布特征与它们的功能有什么联系?蛋白复合体在类囊体上的分布不仅是非均衡的,而且是动态的。蛋白复合体可以沿类囊体膜侧向移动,特别是捕光色素蛋白复合体和细胞色素Cytb6f复合物在基粒类囊体和基质类囊体间的运动在光能的分配和电子的传递的调控中 有非常重要的功能3. 在类囊体反应中,涉及哪些蛋白复合体,它们的主要功能是什么?类囊体膜是光合作用中光反应(电子传递和光合磷酸化)的结构基础,光能吸收的捕 光色素蛋白复合体、光系统I和光系统II,细胞色素b6f复合体,ATP合成酶。光合电子传递链上的第一个蛋白复合体是光系统II。光系统II是多亚基的蛋白复合体,它利用光能推动一

4、系列的电子传递反应,导致水裂解为氧和质子,释放出氧气,并将 电子传到质醌(PQ。细胞色素b6f复合体在PSII和PSI光反应复合体间进行电子的传递,催化还原态的质 醌(PQH)的氧化和质体蓝(PC的还原;并与此偶联地把质子从类囊体的基质转移到类 囊体腔,建立起跨膜的 pH梯度,形成合成 ATP的动力;此外,它还有调节 PSII和PSI间 能量分配以及NADPH和 ATP比例的功能。含铜的蛋白质。介于 Cytb6/f复合体和PSI之间的电子传递体。铜离子的氧化还原变 化传递电子。光系统I从质蓝素接受电子,利用光能推动电子传递,最终将电子传递到铁氧还蛋 白。铁氧化蛋白和铁氧化蛋白一NADP还原酶,

5、严格地说,铁氧还蛋白是光合电子传递的最终产物此外,铁氧还蛋白也参与循环电子传递。再者,铁氧还蛋白是C, N, S同化的中心,在碳同化中,铁氧还蛋白还与硫氧还蛋白的还原有关4. 捕光色素蛋白LHCII的结构和功能是什么?LHCH的单体含有12个叶绿素分子(7个叶绿素a与5个叶绿素b),2个类胡萝卜素 分子。LHCH的主要功能是进行光能的吸收和传递,提高捕光面积和捕光效率;此外,LHCH在光能分配的调节以及光保护反应中也具有重要的作用。自然状态下有生理活性的LHCH是其三聚体。在三聚体形成过程中,首先形成单体,然后形成三聚体。三聚体的形成与磷脂有关。叶绿素在LHCH中的排列保证了其间的适当距离和角

6、度,使能量可以在其间高效地传递。5. 在光合生物中存在哪两类光反应中心,它们有何共同的特点,它们又有何各自特点?高等植物的电子传递链的过程中有两个光反应系统,即PSII和PSI。这两个光反应系统具有一些共同的特点,例如它们核心都是由两条对称的多肽组成,它们都利用“特殊对”的叶绿素分子作为中心色素分子或原初电子供体,它们的原初电子受体是一个叶绿素或去镁叶绿素分子,等等,说明这两个光反应中心可能具有共同的进化来源。这两个光反应中心也有一些完全不同的特点,它们具有不同的最终电子受体,PSII的最终电子受体是质醌,而 PSI的最终电子受体是铁氧还蛋白(Ferredoxi n)。因此可以将它们分为两类光

7、反应中心:type-1光反应中心和type-ll光反应中心。6. 如何证明植物中存在两个串联的光反应系统?需氧光合生物具有两个光反应中心的发现最初来自观察到红降和双光增益的现象。Emerson发现当用波长在680nm以上的光照射时,虽然在叶绿素吸收的有效范围内,但光合作用的量子产率却急剧下降,称为红降现象(图 6.9 )。如果在 引起红降的光照(如700nm)的同时,在外加一个短波的光照(如 680nm),则 量子效率可以提高并且有增益,称之为双光增益(图6.10)。红降和双光增益的现象说明了在光合系统中存在两个相互串联的光反应中心7. 光系统II如何进行水的氧化,其中涉及哪些关键装置,氧气的

8、释放步骤 如何?光系统II是多亚基的蛋白复合体(图 6.13 ),它利用光能推动一系列的电子传递反应,导致水裂解为氧和质子,释放出氧气,并将电子传到质醌(PQ。光系统II推动的反应可以表示为:光+ PSII2F2O+ 2PQ> O2+ 2PQH在水氧化的化学过程中,水被氧化、裂解,放出氧气,需要2分子的水产生1分子的氧气,其中有4个电子的传递,因此PSU需要积累四个氧化等量物 以便从两个水分子中提取四个还原等量物(4e/4H+)来产生一个氧气分子8. 细胞色素bef复合体是如何使质子进行跨膜转移的?Q-循环模型认为:在细胞色素b6f上有两个醌的结合部位:一个是还原态醌(QH)结合和氧化的

9、部位,称为醌的氧化中心(Q);另一个是氧化态的醌( Q结合和还原的部位,称为醌的还原中心(Q)。Q位点在类囊体膜的囊腔一侧,而Q位点在类囊体膜的基质一侧。此外,在细胞色素b6f复合体上的两个细胞色素b6有所不同,一个称低电位的b6,或bL,与Q位点在同侧;另一个称高电位的b6,或加,与Q位点在同侧。当 QH在Q位点被氧化时,第一个电子经QH RFe-4 Cyt f PC途径(亦称高电位电子传递途径)进行传递,而它的第二个电子则经低电位电子传递途径传递,即QHt Cyt b (bL)T细胞色素b (b h)。QH2失去两个电子的同时,将两个质子释放到类囊体腔中,被氧化成Q被还原的bH把Q位点的Q

10、还原为半醌阴离子 Q,在下一次 QH电子传递时从基质获取 H,将Q 还原为QH。这样,每2个QH在Q位点氧化就会有 4个电子进行传递,2个经高电位电子 传递途径将PC还原,另两个传递到 Q位点产生1个QH,同时,向类囊体腔中释放 4个质 子,从基质吸收 2个质子。这就是一个 Q-循环,其总的效果是:氧化 1分子QH为Q向 前传递2个电子,跨膜运转 4个质子。9. ATP合成酶是如何进行ATP的合成的?化学渗透学说认为:电子传递链的各组分在产生ATP的膜系统中的分布是不对称的,电子在电子传递体的传递过程起着质子泵的作用,因而在膜的两侧形成了 pH梯度(ApH)及电位梯度。在这个梯度的驱动下,质子

11、穿过内膜上的ATP酶复合物流回到基质,其能量促使 ADP和Pi合成ATR变构学说认为:在 ATP形成过程中,与 ATP合成酶活性密切有关的Fo的3个 亚基各具一定的构象,分别称为紧张(tight )、松弛(loose )和开放(open),各自对应于底物的结合、产物形成和释放等三个过程。构象的相互依次转化是和质子的通过引起亚基的旋转相偶联的。当质子顺质子电化学梯度流过F。,使 亚基转动,亚基的转动引起亚基的构象依紧张t松弛t开放的顺序发生改变,使ATP得以合成并从催化复合体上释放。具体说,ADP与Pi与开放状态的亚基结合;在质子流的推动下亚基的转动使亚基转变为松弛状态并在较少的能量变化情况下,

12、ADP与Pi自发地形成 ATP,再进一步转变为紧张状态;亚基继续变构成松弛状态,使ATP被释放,并可以再一此结合ADP与 Pi进行下一轮的 ATP合成。在 ATP的整个合成过程中,主要耗能的步骤是ATP的释放,而非ATP的合成。10.什么是光能分配的状态I和状态II,植物是如何实现光能在两个光系统间的平衡分配的?完整叶绿体膜在光下与 Mg、ATP保温可诱导捕光色素蛋白LHCH磷酸化, 同时使吸收的激发能有利于向 PSI分配,即诱导状态U;而在暗中这一过程可 逆转,已磷酸化的LHCU发生脱磷酸化,同时激发能有利于向 PSII分配,即诱 导状态I。天线移动假说认为:捕光的天线蛋白 LHCU磷酸化后

13、,会从PSII分布的基 粒类囊体的垛叠区向PSI分布的基质类囊体移动,因此扩大了 PSI的捕光面积,使吸收的光能更多的向PSI分配;反之,当LHCH脱磷酸化后,则从基质 类囊体向基粒类囊体垛叠区移动,其结果是扩大了PSII的捕光面积,使吸收的光能更多的向PSII分配11.什么是光抑制,植物体进行光保护的机制有哪些?光抑制(photo in hibiti on )是指多余光能对光合作用产生抑制作用,使光 合作用的量子效率下降的现象 。在光合生物在进化的过程中,产生了多层次的光保护机制首先,植物通过各种方式减少光能的吸收,以达到降低光破坏的目的。叶片 是光能吸收的主要器官,减少叶面积,在叶表面形成

14、叶毛或表面物质,改变叶 与光的角度等都可以降低光能的吸收。例如在高光照的地区,植物叶片常较 小;在干燥、高光照的沙漠地区,一些植物的叶变态为刺(当然这和水分平衡 也是有关的)。一些植物叶的表面形成叶毛结构,形成角质或腊质层不仅可以 减少水分的散失,而且也可以减少光的吸收。植物细胞中有过氧化氢酶、过氧化歧化酶、抗坏血酸还原酶、谷胱甘肽还原 酶、抗坏血酸氧化酶等酶系统,可以使氧自由基、过氧化物等失活,防止对植 物细胞的破坏。植物中的酚类化合物、类胡萝卜素等可以直接淬灭单线态氧。当叶绿素吸收光能较多时,非光化学淬灭就会增加而使多余的激发能通过其 他途径被消耗掉。光合作用 (II ):光合碳同化1.卡

15、尔文循环中的主要酶促反应及其生理意义是什么?仅供学习与交流,如有侵权请联系网站删除 谢谢7精品资料 COJ _LHOH'CHjOPOj2-门-c CO 2IcoH X OHOIjOPOyA畑oro(co 2?上部?OHJH XOH4”押呛产?下部?RuBP不稳定的酶结合中间物3-磷酸甘油酸图7-3 核酮糖1, 5二磷酸羧化酶催化的羧化反应2.说明rubisco的特点及其对光合作用的重要性。核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)具有双重功能:既能使RuBP 与C02起羧化反应,推动C3碳循环;又能使RuBP与 02起加氧反应而引起C2 氧化循环即光呼吸。3. 叶绿体类囊体

16、膜内pH值和Mg+浓度在光暗条件下如何变化?对光合碳循环的意义?Rubisco被CO与Mg*活化,叶绿体间质中 和Mg*浓度有光暗的变化,光 驱动H+从间质到类囊体的囊内腔,间质中 pH从7变化到8左右,这是 rubisco催化反应的最适pHo伴随H*进入囊内的是Mg+从囊内腔到间质中, Rubisco与Mg+结合而活化。光下,rubisco活化酶经硫氧还蛋白活化后水解 ATP使rubisco构象变 化、释放RuBP后才能通过结合CO与m6*而活化(图7-4 )o CO结合到 rubisco大亚基活性位点的赖氨酸的氨基上,形成氨基甲酸酯Lys-NH- CO2,这样Mg+再迅速结合到上面去,此时

17、酶构象发生变化而具催化功能(图 7-5 )o 然后rubisco才能依次结合RuBP和CO,催化羧化反应。4. 比较光合作用碳代谢的G途径场所叶绿体基质CO受体RuB P关键酶Rubisco最初产物 PGC3途径和G途径。C4途径羧化叶肉细胞细胞质固定维管束鞘细PEPPEPC和 RubiscoOA5. 说明光对光合酶的调节及其意义。虽然CO同化不直接需要光,但由于需要的同化力来自光反应,而且重要的酶都是光活化的,所以在暗中,由于缺乏同化力ATP与NADPH催化固定CO的酶不活跃,加之气孔关闭,CO减少,因而光合作用、包括 CO同化的卡尔文 循环不能继续进行。6. 光呼吸有什么特点?说明C2循环

18、和G循环的关系。在光呼吸碳氧化循环中,乙醇酸、乙醛酸、甘氨酸等均为C2化合物,因此,光呼吸碳氧化循环又称为C2循环。rubisco具羧化和加氧双重催化活性, RuBP的羧化或加氧间的竞争使光合碳固定效率降低,所以在叶片中的光合碳代 谢实际上是卡尔文循环与光呼吸碳氧化循环整合平衡的结果,卡尔文循环能独 立运转,而光呼吸碳氧化循环却依赖于卡尔文循环中RuBP的再生。两个环间的平衡主要决定于三个因子:rubisco的动力学特性、底物CO与 Q的浓度和温度。rubisco的底物CO与Q竞争同一活性位点,互为抑制剂,酶 催化反应的方向决定于 CO/O2比值。在提供相同CO与Q浓度条件下rubisco与C

19、O的亲和性比与Q的亲和性高几十倍,但是在自然环境空气中,羧化反应仅为加氧反应的3倍,显然,提高CO浓度可明显抑制光呼吸。当温度升高 时,提高了 rubisco与O的亲和力,Q的吸收增加,表现光呼吸增加7. 从植物结构与功能的统一来比较 G、G、CAMS物的光合作用特性。特性代表植物叶片解剖结构叶绿素a/b碳同化途径最初CO受体催的酶活羧化反光合初产物光呼吸光合最适温光饱和点CO补偿点(I LJ光合速率-(CO mol m s )蒸腾系数及耐旱光合产物运输速G植物 典型的温带植 物;小豆菠草 发一种类肉叶|C4植物粱植物蔗带苋亚热粱,甘蔗,苋属体。约3:1条G途径RuBP高rubiSCO酶活PG

20、A高光呼吸较低,约15301/41/2日照强度下饱和“ 高CO补偿点(40 70)10 25大旱性弱950)相对慢20CAM植物,-型胞绿类细叶同切不。管,二绿维达具叶纟勺4:1在不同二条途径在E包pffls纟甲鞘质束Rg管2 一马R管EP鞘活活性有高rubisco 活性早酰乙酸苹果酸低光呼吸较咼,约3047低和卜补偿达到光强光10)25 50小/ 250350)耐旱相对快30 40束叶泡HE色不发包中有小于3:1途不同时间的二条暗中PEP光下RuBP暗中有高PEPC酶活光下有高rubisco 活性。暗中苹果酸;光卜PGA低光呼吸35同C4植物高度亲和对CO有光照下:150 600;暗中:80

21、100,极而旱不一定变化较大8. 在植物细胞中,蔗糖和淀粉是怎样合成的?光合作用中,在叶绿体间质中形成的磷酸丙糖经叶绿体被膜上的磷酸转运器与无机磷交换进入细胞质(见图 7-7),磷酸二羟丙酮与磷酸甘油醛在醛缩酶催化下形成果糖1,6 二磷酸(F-1,6-P ),再由果糖1,6 二磷酸酯酶催化水解形成果糖-6-磷酸(F-6-P ),再在磷酸葡萄糖异构酶与变位酶催化形 成葡萄糖6磷酸与葡萄糖1磷酸(G-1-P)。在UDPGI磷酸化酶(UDPglucose pyrophosphorylase )催化下,形成 UDPGS焦磷酸。UDPG1 葡萄糖的转移体,可将葡萄糖转移到F-6-P上,形成蔗糖。9. 给

22、出一般植物光合作用光强曲线图并加以说明55OO2052TXJ1? mlom 化E同Oj合光200400600 800I1000吸收光强(1 mol m-2s-1 )图中曲线表示,植物在暗中不进行光合作用,可以测得呼吸释放的CO量,随光强增加,光合速率迅速上升,当达到某一光强,叶片光合速率等于呼 吸速率时,即吸收的CO与释放的CO相等,此时测定表观光合速率为零,这时 的光强称为光补偿点(light compensation point)。生长在不同环境中的植物光补偿点不同,一般来说,阳生植物光补偿点较高,约为1020 molm2sI阴生植物的呼吸速率较低,其光补偿点也低,约为15 molm2s-

23、1。所以在光强有限条件下,植物生存适应的一种反应是低光补偿点,即能更充分地利用 低强度光。仅供学习与交流,如有侵权请联系网站删除 谢谢11精品资料10. 从光合作用机理上来讨论影响光合作用的各种环境因子。在农业生产中,当选用一定品种后,光合速率主要受光照、CQ温度、水分、矿质营养等环境因子的影响。光对光合作用的影响:阳生植物的叶片厚,栅栏组织细胞长而且层数多,而阴生植物叶片较大且薄。阴生植物叶片叶绿体具有较大的基粒与更多的片层结 构;每个反应中心含更多的叶绿素分子,有较高的叶绿素b/a比值;其PSII反应中心与PSI反应中心量为3:1,而阳生植物为2:1。阳生植物叶片叶绿体中含 更多的可溶性蛋

24、白,尤其是rubisco和叶黄素循环成份,因而能更充分利用同 化化力、有更高的碳同化能力。光合作用也与光质有关,在可见光谱范围内,不同波长的光的光合量子效率不同。由于叶绿体色素的吸收高峰在红光和兰紫光部分,所以在能量相等时,红光、兰光效率高于黄绿光。11. 按功能列出与光合作用有关的矿质元素。氮素营养状况不同的叶片的光合速率与其Rubisco的活性密切相关;K+不足时会使Rubisco羧化活性降低。Ca2+直接与光合放02有关,并且影响气 孔的运动。12. 在生产实践中如何应用光补偿点、光饱和点、CO补偿点、CO饱和点的知识?植物的光补偿点和光饱和点随其它环境条件变化而变化。当CO浓度增高时,

25、光补偿点降低而光饱和点升高;温度升高时,光补偿点升高。植物的光补 偿点和光饱和点显示了植物叶片对强光和弱光的利用能力,代表了植物的需光 特性和需光量,即可利用光的上下限。在选用某地区栽培作物品种及正确选择 间种、套作的作物以及林带树种搭配方面,在决定作物的密植程度方面有重要 的参考价值。要想提高产量,从光量方面可考虑如何降低作物的光补偿点,而 提高作物的光饱和点,以最大限度地利用日光能。不同植物的CO饱和点与补偿点不同,特别是 G植物和C4植物有较大的区 别。一般G植物的CO饱和点比C3植物低。G植物的CO补偿点也比C3植物低 (图7-23)。如C3植物小麦的CO补偿点约为50 l L-1左右

26、;而G植物玉米的 CO补偿点约0-5 l L-1。因此,在低CO浓度时,G植物的光合效率高于G植 物。为什么C3植物与G植物的CO补偿点会有如此大的区别?主要在于他们固 定CO的羧化酶不同,G植物的PEPC与叶肉细胞胞质中的HC0的亲和力较高, 而且经苹果酸形成而浓缩 CO,降低了维管束鞘细胞中的光呼吸,因而能更充分 地利用低浓度CO进行光合作用,所以CO补偿点明显低于C3植物。CO补偿点也受其它环境因素的影响,在温度升高、光照较弱、水分亏缺等条件下,CO补偿点上升,光合作用下降。在温室栽培中,加强通风、增施CO可防止植物出现CO “饥饿”;在大田生产中,增加有机肥,经土壤微生物分解 释放CO

27、,能有效地提高作物的光合效率。13. 冬季在温室中栽培蔬菜,采取哪些农业措施来提高植物的光合速率?延长照光时间,适当增加光强。14作物光能利用率不高的原因有哪些?怎样提高作物群体光能利率?第八章 植物的呼吸代谢及能量转换1、什么是呼吸作用?测量植物呼吸作用的指标有哪些?呼吸作用又称为呼吸代谢。植物的呼吸代谢是指植物以碳水化合物为底物,经过呼吸代谢途径降解,产生各种中间产物和能量,供给其他生命活动过 程之需要。呼吸作用的生理指标呼吸商:呼吸底物在呼吸过程中所释放的CO的量和吸收的Q的量间的比值称为呼吸商(respiratory quotient ,简称 R.Q.):放出的CQ摩尔数呼吸商(R.Q

28、.)= 8.2吸收的Q摩尔数呼吸强度又称呼吸速率(respiratory rate ),是指单位重量的呼吸材料,在单位时间内进行呼吸所消耗的 Q或释放的CQ数量。2、植物如何进行淀粉和蔗糖的降解?淀粉水解为葡萄糖过程涉及多种酶的催化,其中最主要有三种酶,即-淀粉酶、-淀粉酶和淀粉磷酸解酶。只有-淀粉酶可以作用于完整的淀粉粒。-淀粉酶随机地作用于直链淀粉和枝链淀粉的1,4-键使淀粉粒分解。对于直链淀粉-淀粉酶可以将其最终水解为含有两个葡萄糖的麦芽糖。-淀粉酶作用于淀粉的非还原端将淀粉水解为-麦芽糖。淀粉磷酸解酶从淀粉的非还原端开始分解淀粉,产生葡萄糖-1-磷酸。枝链淀粉的分枝是由各种去分枝酶(d

29、ebranching enzyme )进行水解的。主要有三类:枝链淀粉酶(pullulanase )、异构淀酶(isoamylase )和限制性糊精酶(limit dextrinase)经这些酶作用脱去分支的淀粉可以进一步被淀粉酶或淀粉磷酸解酶分解。淀粉水解产生的麦芽糖经麦芽糖酶催化水解产生2分子的葡萄糖。植物中淀粉分解为六碳糖的过程发生在叶绿体和淀粉体中。在植物中蔗糖可以经两条途径分解。细胞质中的蔗糖被蔗糖合成酶(sucrose synthase )分解。蔗糖合成酶利用UTP将蔗糖分解为果糖、UDP葡萄糖和无机磷酸。蔗糖水解的另一途径是利 用蔗糖酶(invertase )将蔗糖水解为果糖和葡

30、萄糖。3、比较植物和动物的糖酵解和三羧酸循环,说明其不同之处4、丙酮酸是如何进入线粒体并进行氧化反应的?丙酮酸是通过丙酮酸转运器(pyruvate tran slocator)输入线粒体基质的。丙酮酸进入线粒体基质后,经丙酮酸脱氢酶系催化,氧化脱羧产生NADHCO和乙酸;乙酸通过硫酯键与辅酶 A(CoA结合,形成乙酰辅酶 A。5、什么是氧化磷酸化?氧化磷酸化的基本过程是如何进行的?6什么是交替途径,它是如何进行的?除了 NAD!和FADH的电子传递途径之外,大多数植物具有交替途径(alternative pathway ),进行氧的还原。这一途径对氰化物、迭氮化物和一氧化碳等抑制NADH和 F

31、ADH的电子传递途径的抑制剂不敏感。因此也称抗氰呼 吸或氰不敏感呼吸、抗霉素 A不敏感呼吸、氧肟酸敏感呼吸等等。一般认为,交替途径与NADH和FADH的电子传递途径的分支点在泛醌。由于正常的NADH和FADH的电子传递途径从泛醌往下主要是一些细胞色素电子载 体,因此也可将之称为细胞色素途径(cytochrome pathway )。而在交替途径 中,电子可能从泛醌传递给一种黄素蛋白,然后通过交替氧化酶再传递到氧7、植物体中有哪些非线粒体的末端氧化体系? 多酚氧化酶,抗坏血酸氧化酶,过氧化物酶和过氧化氢酶,乙醇酸氧化酶体 系。8、什么是化学渗透学说?化学渗透学说认为:电子载体在线粒体内膜的几何分

32、布使得当电子进行传 递时,质子会跨膜进行转移,从线粒体基质转移到膜间隙。由于线粒体膜对质 子是不通透的,因此可以建立起跨膜的质子电化学势梯度(proto n electrochemical gradie nt),或者也可以称为质子动势( proto n motiveforce ): P E ZA pH8.5其中E为跨线粒体内膜的电位差,内膜外为正而内膜内为负;Z=2.303RT/F (在25E时约为59);A pH为跨膜的质子浓度差(pH差)。9、ATP是如何合成的?结合转化机制认为:在 ATP的合成过程中,主要耗能的步骤是ATP的释放,而非 ATP高能键的形成;亚基上有核苷酸的结合位点并具有

33、开放(open)、松弛(loose )和紧张(tight )三种构象,F1的3个 亚基分别处于不同的构象,并分别对应于底物( ADP和 P )的结合、产物形成和释放等过程;当质子顺质子电化学梯度通过时,会引起亚基的旋转,结果引起 3个 亚基构象的依次转化,完成 ADP和P的结合,ADP和Pi的高能磷酸 键的合成,并使ATP得以从催化复合体上释放。10、植物的呼吸代谢途径有哪些调控位点?第十章韧皮部运输与同化物分配1、如何证明植物体中的同化物运输是通过韧皮部运输的?早期植物学家所做的树皮环割的观察。由于树木的韧皮部在树的树皮部分 而木质部在树的树干部分,如果将树木或枝条茎部的一圈树皮用手术完全除

34、 去,这样韧皮部就会被完全截断而木质部依然畅通。被环割的树或枝条通常可 以在相当长时间内正常生活,环割以上的叶的蒸腾照常进行,但是环割以下部 位的树皮逐渐枯竭死去,而环割以上部位的树皮则仍然健康,在环割部位上方 的树皮会逐渐膨大起来,这是由于在树叶中生产的同化物的运输被阻断并在环 割处积累所致。据此可以推测光合作用生产的同化物主要是在韧皮部中进行运 输的。利用放射性同位素示踪的方法可以更加精确地证明同化物是在韧皮部进行 运输的。带放射性同位素的物质可以通过多种途径引入植物体内,例如可以在 叶面或切除叶片的叶柄直接饲喂带有放射性同位素的蔗糖,也可以用含有放射 性碳同位素的CO饲喂特定叶片,利用植

35、物光合作用固定 CO将放射性同位素引 入植物体内。比较常用的方法是饲喂14C同位素CO的方法。经植物叶光合作用 固定CO的作用,放射性同位素14C被转化到光合同化物中,因此光合同化物的 运输可以通过对其放射性的监测进行研究。对于同位素的监测有放射性测定仪和放射性自显影等方法。利用放射性同位素的方法已经证明同化物的运输是在 植物韧皮部进行的。2、筛管和伴胞各有哪些类型,它们各有哪些形态解剖上的特征?被子植物的筛管分子是高度分化的细胞。成熟的筛管分子是细长的筒状细胞,直径约2040m长度为100500m成熟筛管分子中缺少许多正常细胞具 有的细胞器,例如细胞核、高尔基器、液泡、核糖体以及微管和微丝等

36、,但是 筛管分子仍然有一些线粒体和滑面内质网。筛管分子首尾相接串联在一起形成 一个“管道”,称为筛管sieve tube)。筛管中筛管分子的端壁上形成多孔的特 化筛域叫筛板(sieve plate)。筛板是在筛管分子分化过程中逐步形成的。在筛 管分子的分化过程中,相邻筛管分子间胞间连丝扩大,胞间连丝扩大的部位会 发生胼胝质的沉积并逐步突破细胞壁的中胶层形成穿孔,即筛孔。筛孔的孔径 可达0.5m或更宽,筛孔面积约占筛板总面积的 50%裸子植物中的筛分子是筛胞。筛胞的特化程度不如被子植物的筛管分子。筛胞也是细长的筒形细胞,长度可达 1mm筛胞的两端成斜面,不具备筛板, 筛孔区通常在两侧。筛胞中没有

37、 P-蛋白存在。由于筛胞间没有直接的通道相 连,因此同化物在裸子植物筛胞内的运输机制可能与被子植物筛管分子的运输 机制完全不同。在成熟叶片的小叶脉伴胞至少具有三种类型,普通伴胞(ord inarycompanion cell)、转移纟田胞(transfer cell)和中间纟田胞(intermediary cell)普通伴胞普通伴胞具有叶绿体,叶绿体中有发育完好的类囊体。普通伴胞除了与筛管分子之间有大量胞间连丝之外,在其他部位很少有胞间连丝。 这些细胞中的物质必须通过质外体途径进入伴胞,再进一步进入筛管。转移细胞 转移细胞与普通伴胞类似,也仅与筛管分子间具有大量胞间 连丝,但是转移细胞具有另一

38、个显著的特征,即转移细胞的细胞壁向内形成许 多指状内突,特别是那些不与筛管分子相邻的壁。细胞壁的这种内突使转移细 胞与质外体空间的接触面积极为扩大,增加了细胞跨膜运输的能力。中间细胞中间细胞的叶绿体不含淀粉,类囊体常发育不完全,细胞中有大量的小液泡。中间细胞最重要的特征是与周围细胞,特别是和鞘细胞间有 大量的胞间连丝相联系。因此中间细胞的功能是通过共质体途径吸收溶质。3、P蛋白是指哪一类蛋白,它们的可能功能是什么?P-蛋白在筛管分子中可以有多种存在形式,例如管状、丝状、颗粒状、结晶 状等等,这些存在形式往往与植物种类和筛管分子的成熟程度相关。在幼嫩的 筛管分子中,P-蛋白在细胞质中形成扭曲盘绕

39、的球形或纺锤形蛋白结构,称为 P-蛋白体(P-protein body)。细胞成熟后,P-蛋白形成管状或丝状的结构。P-蛋白的功能可能是防止筛管中汁液的流失。在筛管中通常需要维持较大 的压力用于筛管的集流运输。当筛管发生破裂或折断时,筛管内的压力会将筛 管汁液挤出筛管因而造成营养物质的流失,如果不把受伤的筛管堵住,植物就 可能会因“血流不止”而死亡,因此,筛管的及时堵漏是很重要的。在筛管发生 断裂时,P-蛋白会随汁液流动并在筛板处堵塞通道从而防止汁液的进一步流 失。4、什么是同化物运输的源和库,源库间的同化物运输存在哪些规律?源(source)是指生产同化物以及向其他器官提供营养的器官,例如绿

40、色植 物的成熟叶片、种子萌发时的子叶或胚乳组织;而库(sink)是指消耗或积累同 化物的接纳器官,例如幼叶、根、花、果实、种子等。“源”和“库”是相对的概 念。源库运输的规律1)就近运输;2)向生长中心运输;3)优先在有维管束相连接的源库间运输;4)维管束的并接(anastomosis)。5、什么是压力流动学说?有哪些研究证据支持该学说?压力流动学说认为筛管的液流是靠源端和库端渗透势所引起的膨压差所建立 的压力梯度来推动的。在源端韧皮部进行溶质的装载,溶质进入筛管分子后细 胞渗透势下降同时水势也下降,于是木质部的水沿水势梯度进入筛管分子,筛 管分子的膨压上升;另一方面,在运输系统的库端,由于韧

41、皮部的卸出,库内 筛管分子的溶质减少,细胞渗透势提高,同时细胞水势也提高,这时韧皮部的 水势高于木质部,因此水沿水势梯度从筛管分子回到木质部,引起筛管分子膨 压的降低。这样就在源端和库端形成膨压差。由于源-库端的膨压差,筛管中 的汁液沿压力梯度从源向库运动。筛管中汁液的运动本身并不需要能量,但是 在源库端进行的装载和卸出则是消耗能量的。能量主要用于建立和维持源库两 端的压力差。韧皮部的运输机制如果符合压力流动学说,就必须具备以下条件:1筛管间的筛孔必须是开放的利用快速冷冻和固定技术得到的电镜结果表明筛管分子中 P-蛋白常位于筛 管分子的外周或者分布在整个管腔,位于筛孔的 P-蛋白沿孔道或以疏松

42、的网状 分布。在葫芦科、甜菜、豆类等许多植物中都观察到这样的筛孔的开放状态。仅供学习与交流,如有侵权请联系网站删除 谢谢19精品资料这些观察结果是符合压力流动学说的。最近利用共聚焦显微镜技术对蚕豆 (Vicia faba )中筛管分子在活体状态下荧光分子的运输过程进行了观察,结果 表明筛管孔道在活体中是开放的。2在同一筛管中没有双向运输的发生对于筛管分子中运输方向的观察一般是通过在筛管中装入示踪物如荧光染 料,然后根据示踪物的运动方向来确定筛管集流的方向。常常可以观察到示踪 物在茎的不同维管束中沿不同方向的运动。因此目前对筛管分子中物质运输方 向的观察结果是支持压力流动学说的。3. 筛管运输本

43、身并不需要能量一些可以耐受短期低温的植物比如甜菜,使其叶柄的一段处于C的低温,这时组织的呼吸被抑制了 90%,而韧皮部的运输在受到暂短的抑制后可以逐步 恢复到正常水平。把南瓜(Cucurbita pepo )叶柄置于100%的氮气和黑暗条件 下,运输部位的有氧呼吸被完全抑制但是运输过程依然进行。因此造成运输抑 制的原因可能是筛孔的堵塞而非不能满足运输的能量需求。4. 在源端和库端存在膨压差对源端和库端筛管分子的膨压可以进行直接测定,根据目前所得到的源库 端膨压的测定值,我们可以发现源端总是具有比库端更高的膨压值。源端和库端筛管分子的膨压值也可以通过从渗透势和水势计算得到源库两 端所需的膨压差值

44、是0.12到0.46MP&因此源库端存在的膨压差是足以推动筛 管集流的运行的。6什么是韧皮部的装载?韧皮部的装载包括哪些途径和类型?韧皮部装载途径及类型和参与装载的细胞的结构和所运输的糖的种类有何关联?韧皮部装载(phloem loading)包括光合产物从成熟叶片中叶肉细胞的叶绿 体运送到筛管分子-伴胞复合体的整个过程,其中包括三个步骤:第一个步骤是 光合作用产物从叶绿体外运到细胞质。在白天,光合作用生产的磷酸丙糖从叶 绿体外运到细胞质,然后转化为蔗糖;在夜里,叶绿体中的淀粉水解为葡萄 糖,之后被运送到细胞质并转化为蔗糖;第二个步骤是蔗糖从叶肉细胞运输到 叶片小叶脉的筛管分子-伴胞复

45、合体附近。这个过程往往只涉及几个细胞的距 离,因此也称为短距离运输(short-distanee transport);第三个步骤是筛管分子装载(sieve element loading),即蔗糖进入筛管分子-伴胞复合体的过程。韧皮部装载可以通过质外体途径也可以通过共质体途径。韧皮部装载类型是和小叶脉伴胞类型、筛管分子-伴胞复合体与周围细胞间胞间连丝的密度以及糖的运输形式等因素相关的。首先取决于伴胞类型和筛管分子-伴胞复合体与周围细胞胞间连丝的密度。普通伴胞和转移细胞除了与筛管分子间有大量胞间连丝外,与周围的其他细胞 缺少胞间连丝的连络,因此光合产物进入筛管必须经过质外体的途径。而中间 细胞

46、与周围细胞间有大量的胞间连丝存在,因此光合产物可以经过共质体的途 径进入筛管。筛管分子-伴胞复合体与周围细胞胞间连丝的密度在不同植物种属中有相当大的差异。一般可以根据其密度的大小分为类型1、类型2a和类型2b,即有大量胞间连丝存在,有中等密度的胞间连丝存在和几乎无胞间连丝存在三种类类。不同类型间胞间连丝的密度差异约有10倍,从类型1到类型2b的差异可达1000倍。韧皮部装载的途径还与所运输糖的形式有关。以蔗糖为同化物运输形式的 植物种属大多数都利用质外体韧皮部装载途径,这些植物在小叶脉的伴胞类型 通常为普通伴胞或转移细胞,在筛管分子-伴胞复合体与周围细胞间很少有胞间 连丝,为类型2b。例如甜菜

47、,许多豆科植物等。而具有共质体韧皮部装载途径 的植物种属除蔗糖外还运输棉子糖、水苏糖等多聚糖,这类植物的小叶脉通常 具有中间细胞类型的伴胞,在筛管分子-伴胞复合体与周围细胞之间有大量的胞 间连丝,为类型1,例如锦紫苏(Coleus blumei )、西葫芦(Cucurbita pepo )和 甜瓜(Cucurnis melo )等。在同一植物中可以有混合的装载途径,例如寡糖通过共质体装载而蔗糖通 过质外体装载,不同的糖通过不同途径平行地进入不同的筛管分子-伴胞复合 体。不同的韧皮部装载途径还可以发生在不同等级的叶脉中,质外体途径的韧 皮部装载发生在较高等级的叶脉中,共质体途径的韧皮部装载发生在

48、较低等级 的叶脉。因此,韧皮部的装载可能还有其他的类型和装载机制有待我们去揭 示。7、在不同的装载途径中,糖是如何被运出和运入细胞或在细胞间进行运输的?质外体途径中质子泵将质子泵出细胞,在质外体中形成较高的质子浓度, 建立起细胞内外的质子梯度。质外体中的质子趋向于向细胞内扩散,在细胞膜 上的特殊载体可以利用质子的顺电化学梯度的扩散将细胞外的溶质蔗糖与质子 共同转运至细胞内,这种运输方式称为蔗糖一质子同向运输(sucrose-prot onsymport) 或共运输(cotransport) 。聚合物陷阱模型认为:共质体途径中叶肉细胞光合作用中产生的蔗糖和肌 醇半乳糖苷通过胞间连丝从维管束鞘细胞

49、扩散进入中间细胞后,在中间细胞中 蔗糖被用于合成棉子糖和水苏糖因而被消耗掉,这样就维持了蔗糖从维管束鞘 细胞到中间细胞的顺浓度梯度的运输,同时由于合成的棉子糖和水苏糖具有较 大的分子量而无法通过扩散经胞间连丝回到维管束鞘细胞,而中间细胞和筛管 分子间的胞间连丝的较大通透性可以允许中间细胞中合成的棉子糖和水苏糖扩 散进入筛管分子,这样被运输的糖(棉子糖和水苏糖)在中间细胞和筛管分子 中就会提高。8、什么是韧皮部的卸出?植物体如何进行同化物卸出?9、什么是光合作用产生的同化物的配置,同化物的配置受哪些因素的调控?植物将光合固定的碳转移到不同代谢途径的调节作用称为配置(allocati on)。10

50、、什么是同化物的分配?源和库之间的关系如何影响同化物的分配?植物体中有规律的光合同化物向各库器官输送的模式称为分配(partiti oning) 。源叶的代谢受库需求的调节:虽然库器官对同化物的需求最终要依赖于源叶 的光合作用,但是库的需求对源叶的代谢有非常重要的调节作用。光合叶中同化物(淀粉、蔗糖和己糖)是否发生积累可能是联系库需求和光 合作用的重要因素。其可能的作用机制有以下几方面:(1) 磷酸的可利用性当库需求降低时,光合作用可能会由于叶绿体中磷酸浓 度的降低而受到限制。当库需求低时,蔗糖的合成会降低,可用于通过磷酸转 运器与叶绿体中磷酸丙糖交换的磷酸就会减少。(2) 糖的调节作用 高水

51、平的糖会使许多光合作用的酶的转录速度和基因表达 降低。如前所述,较长期源库比例的改变会引起源细胞代谢的变化,这个变化的时间进程是和基因表达的变化相一致的。植物的生长、分化和发育1. 植物与动物生长发育特点的主要区别是什么?植物发育是从胚胎发生开始的,胚胎构成了植物体的基本轮廓,建立了植物生长发育的基本模式;同时还形成了植物持续生长所需要的分生组织,使成年植物可以继续繁衍新的 器官和组织。与动物发育不同的是,植物发育是一个持续进行的过程。本章将讨论植物 根和茎中分生组织的分裂特性,以及控制这些分生细胞的分裂方向的各种因 素。2. 简述植物生长、分化和发育的概念植物的生长(growth ),是指植

52、物在体积、重量、数目等形态指标方面的增加,是一 种量的变化。植物分化(differe ntiation)是指植物细胞在结构、功能和生理生化性质方面发生的变化,是一种反映细胞之间区别的质的变化。而所谓发育(development ),则是植物生长和分化的总和,3. 何谓植物细胞分裂周期?周期素(cyclin )和周期素依赖蛋白激酶(CDK是如何控制细胞周期的?4. 植物细胞分化的四步模式是什么?举例说明。一般地,植物细胞的分化应该有下述四个事件的顺序发生:1、诱导细胞分化信号的产生和感受;2、分生细胞特征基因的关闭以及分化细胞特征基因的表达;3、形成分化细胞结构和功能的基因表达;4、前述基因表达

53、导致的细胞结构和功能上的分化成熟。植物维管 细胞的分化过程,较好地反映了上述细胞分化的四步模式。在拟南芥中,皮层薄壁细胞接受生长素信号后,诱导同型异源框基因(homeoboxgene) ATHB-8的表达。已知同型异源框基因是与器官分化密切相关的基因,是分化细胞的 特征基因。该类基因编码转录因子蛋白,调节细胞分化所需的下游基因的表达。在植物导 管分子细胞分化过程中,已经得到鉴定的这类下游基因有编码蛋白酶的基因和编码核酸酶 的基因,这两类基因的产物参与导管分子最后成熟时的细胞自溶过程。可以看出,在导管分子的分化过程中,表现出典型的四步模式,依次是诱导信号生长素 的产生和感受、分化细胞特征基因AT

54、HB-8的产生、分化所需的功能基因如蛋白酶基因和核酸基因的产生,最终导致细胞自溶形成成熟的导管分子。5. 什么是极性?为什么说极性是植物细胞分化的基础?举两例加以说明。所谓极性(polarity ),是指植物器官、组织或细胞在形态结构、生化组成以及生理功 能上的不对称性。植物细胞的极性是基因表达控制的,同时也与该细胞在组织内的位置有关。另外,各 种环境条件,如光照梯度、温度梯度甚至电势梯度的影响,也会改变细胞极性,影响其分 裂方向和分化方向。例如墨角藻(Fucus)的大小孢子在海水中结合生成的合子(zygote)最初缺乏细胞壁,完全是一个无极性的球形细胞,但是在由上而下的单向光线的照射下, 合

55、子形成后的几个小时之内便形成了以细胞内单向钙离子流为特征的极性(图11-4 ),此时改变光线照射方向可以改变细胞极性的方向,但是1014小时后,细胞壁形成,细胞内细胞骨架的固定作用将细胞分为两极:叶极(thallus pole )和根极(rhizoid pole )。随后发生的第一次分裂也是不均等分裂,形成原叶细胞(thallus cell)和根细胞(rhizoid cell )。6. 什么是位置效应?试举例说明。7. 植物胚胎发育的三个阶段是什么?胚胎发生的第一阶段为球形胚(globular stage embryo )阶段(图11-7D),受精卵进行精确的同步分裂形成一个对称的多细胞球;第

56、二阶段为心形胚(heart stage embryo)阶段(图11-7E and F),在球形胚一端的两侧发生快速的细胞分裂,形成两个对 称的子叶原基,构成一个两侧对称的心形胚;第三阶段为鱼雷形胚(torpedo stageembryo)阶段(图11-7G),胚轴开始伸长,子叶原基进一步发育,形成鱼雷形胚。8. 植物胚胎发育过程中建立的三个植物生长发育的基本模式是什么?植物胚胎发生过程中奠定的植物生长发育的基本模式,首先是植物器官的径向构造模式(radial structure pattern);其次是植物的轴向发育模式(axial developmentalpattern);最后是将来分化发育各种植物器官的初生分生组织(primary meristems )。植物生长物质与植物发育1. 植物激素、植物生长物质、植物生长调节剂的定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论