八年级(三角形)教案_第1页
八年级(三角形)教案_第2页
八年级(三角形)教案_第3页
八年级(三角形)教案_第4页
八年级(三角形)教案_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教学时间课题7.1.3三角形的稳定性课型新授教学媒体多媒体教学目标知识技能1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。过程方法1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。情感态度培养学生观察、猜想、探究、归纳的习惯和能力,体验数学发现的乐趣.教学重点三角形稳定性及应用。教学难点三角形稳定性及应用。教学过程设计教学程序及教学内容师生行为设计意图一、情景导入 盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?二、三角形的稳定性实验1、把三根木条用钉子钉成一个三角形木架,然后扭动它

2、,它的形状会改变吗? (2)不会改变。2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?会改变。3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?不会改变。从上面的实验中,你能得出什么结论?三角形具有稳定性,而四边形不具有稳定性。三、三角形稳定性和四边形不稳定的应用三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如: 钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。你还能举出一些例子吗?点题,板书课题.练一练:(1)在ABC中,已知A:B:C=1:2:3。求出A、

3、B、C的度数。(2)在ABC中,已知A+B+C=100,C=2A。求A、B、C的度数。问题3:三角形的三个内角可以都是锐角吗?都是直角吗?都是钝角吗?你认为最多能有几个直角?几个锐角?几个钝角?(二)活动:如图,个有一张三角形纸片,不知它们的形状,图中分别出示了三角形的一个内角,其余部分被另一张长方形纸片遮住,你能不能判断它们各是什么三角形?为什么? 练习加深对二次根式“运算结果和被开方数双非负”的理解.先具体后抽象,先练习后归纳,一可培养学生数感,二可有利于性质的得出,三可加深对性质的理解.教 学 反 思教学时间课题7.2.1三角形的内角课型新授教学媒体多媒体教学目标知识技能通过运用拼图的方

4、法解决“三角形的内角和等于180°”这一重要定理。2、能运用三角形内角和定理解决一些简单的实际问题3、培养学生思维的灵活性。过程方法通过运用拼图的方法解决“三角形的内角和等于180°”这一重要定理。2、能运用三角形内角和定理解决一些简单的实际问题3、培养学生思维的灵活性。情感态度培养学生观察、猜想、探究、归纳的习惯和能力,体验数学发现的乐趣.教学重点三角形内角和定理。教学难点三角形内角和定理的简单推理。教学过程设计教学程序及教学内容师生行为设计意图一、导入新课我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?二、

5、三角形内角和的证明回顾我们小学做过的实验,你是怎样操作的?把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出BCD的度数,可得到A+B+ACB=1800。投影1 图1想一想,还可以怎样拼?剪下A,按图(2)拼在一起,可得到A+B+ACB=1800。 图2把和剪下按图(3)拼在一起,可得到A+B+ACB=1800。 如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?已知ABC,求证:A+B+C=1800。证明一过点C作CMAB,则A=ACM,B=DCM,又ACB+ACM+DCM=1800A+B+ACB=1800。即:三角形的内角和等于1800。由图2、

6、图3你又能想到什么证明方法?请说说证明过程。三、例题例 如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角ACB是多少度? 分析:怎样能求出ACB的度数? 根据三角形内角和定理,只需求出CAB和CBA的度数即可。CAB等于多少度?怎样求CBA的度数?解:CBA=BAD-CAD=800-500=300 ADBE BAD+ABE=1800ABE=1800-BAD=1800-800=1000ABC=ABE-EBC=1000-400=600ACB=1800-ABC-CAB=1800-600-300=900答:从C岛看AB两岛的视角A

7、CB=1800是900。四、课堂练习课本74面1、2题。作业:76面1、3、4;77面7、9题。点题,板书课题.二、回顾与思考1、什么是三角形?什么是多边形?什么是正多边形?三角形是不是多边形?2、什么是三角形的高、中线、角平分线?什么是对角线?三角形有对角线吗?n边形的的对角线有多少条?3、三角形的三条高,三条中线,三条角平分线各有什么特点?4、三角形的内角和是多少?n边形的内角和是多少?你能用三角形的内角和说明n边形的内角和吗?5、三角形的外角和是多少?n边形的外角和是多少?你能说明为什么多边形的外角和与边数无关吗?6、怎样才算是平面镶嵌?平面镶嵌的条件是什么?能单独进行平面镶嵌的多边形有

8、哪些?你能举一个几个多边形进行平面镶嵌的例子吗?先具体后抽象,先练习后归纳,一可培养学生数感,二可有利于性质的得出,三可加深对性质的理解.教 学 反 思教学时间课题7.2.2三角形的外角课型新授教学媒体多媒体教学目标知识技能1、理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。过程方法1、理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。情感态度培养学生观察、猜想、探究、归纳的习惯和能力,体验数学发现的乐趣.教学重点三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。教学难点三角形的外角和三角形外角的性质是重点;理解三角形的外角是难

9、点。教学过程设计教学程序及教学内容师生行为设计意图一、导入新课投影1如图,ABC的三个内角是什么?它们有什么关系?是A、B、C,它们的和是1800。若延长BC至D,则ACD是什么角?这个角与ABC的三个内角有什么关系?二、三角形外角的概念 ACD叫做ABC的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。想一想,三角形的外角共有几个?共有六个。注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角.三、三角形外角的性质容易知道,三角形的外角ACD与相邻的内角ACB是邻补角,那与另外两个角有怎样的数量关系呢?投影2如图,这是我们证明三

10、角形内角和定理时画的辅助线,你能就此图说明ACD与A、B的关系吗?CEAB, A=1,B=2又ACD=1+2ACD=A+B你能用文字语言叙述这个结论吗?三角形的一个外角等于与它不相邻的两个内角之和。由加数与和的关系你还能知道什么?三角形的一个外角大于与它不相邻的任何一个内角。即 ,。四、例题投影3例 如图,1、2、3是三角形ABC的三个外角,它们的和是多少? 分析:1与BAC、2与ABC、3与ACB有什么关系?BAC、ABC、ACB有什么关系?解:1+BAC=1800,2+ABC=1800,3+ACB=1800,1+BAC+2+ABC+3+ACB=5400 又BAC+ABC+ACB=18001

11、+2+3=3600。你能用语言叙述本例的结论吗?三角形外角的和等于3600。五、课堂练习课本75面练习;六、课堂小结1、什么是三角形外角?2、三角形的外角有哪些性质?作业:课本76面1、2、5、6;77面8题。点题,板书课题.14、一个多边形的内角中,锐角的个数最多有( ) A.3个 B.4个 C.5个 D.6个15、.如图所示,A=50°,B=40°,C=30°,则BDC=_.16、一个多边形的每一个内角都比相邻的外角的3倍还多20°,求这个多边形对角线的条数。先具体后抽象,先练习后归纳,一可培养学生数感,二可有利于性质的得出,三可加深对性质的理解.教

12、 学 反 思教学时间课题731 多边形课型新授教学媒体多媒体教学目标知识技能1、了解多边形及有关概念,理解正多边形的概念2、区别凸多边形与凹多边形过程方法1、了解多边形及有关概念,理解正多边形的概念2、区别凸多边形与凹多边形情感态度培养学生观察、猜想、探究、归纳的习惯和能力,体验数学发现的乐趣.教学重点多边形及有关概念、正多边形的概念是重点;区别凸多边形与凹多边形是难点。教学难点多边形及有关概念、正多边形的概念是重点;区别凸多边形与凹多边形是难点。教学过程设计教学程序及教学内容师生行为设计意图一、情景导二、多边形及有关概念这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接这

13、种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。多边形按组成它的线段的条数分成三角形、四边形、五边形、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的A、B、C、D、E。多边形的边与它的邻边的延长线组成的角叫做多边形的外角如图中的1是五边形ABCDE的一个外角。投影2连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线四边形有几条对角线?五边形有几条对角线?画图看看。你能猜想n边形有多少条对角线吗?说说你的想法。n边形有1/2n(n3)条对角线。因为从n边形的一个顶点可

14、以引n3条对角线,n个顶点共引n(n3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2n(n3)条对角线。三、凸多边形和凹多边形投影3如图,下面的两个多边形有什么不同?在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。注意:今后我们讨论的多边形指的都是凸多边形四、正多边形的概念我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等

15、的多边形叫做正多边形。投影4下面是正多边形的一些例子。五、课堂练习 课本81面练习1。六、课堂小结 1、多边形及有关概念。2、区别凸多边形和凹多边形。点题,板书课题.11、用边长相等的正多边形进行密铺,下列正多边形能和正八边形密铺的是 A、正三角形 B、正六边形 C、正五边形 D、正四边形12、如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是_度.13、如图,若A=32°,B=45°,C=38°,则DFE等于( )A.120° B.115° C.110° D.105°先具体后抽象,先练习后归

16、纳,一可培养学生数感,二可有利于性质的得出,三可加深对性质的理解.教 学 反 思教学时间课题732 多边形的内角和课型新授教学媒体多媒体教学目标知识技能了解多边形的内角、外角等概念;过程方法能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算情感态度能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算教学重点多边形的内角和与多边形的外角和公式是重点;教学难点多边形的内角和定理的推导是难点。教学过程设计教学程序及教学内容师生行为设计意图一、复习导入我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为3

17、60°,现在你能利用三角形的内角和定理证明吗?二、多边形的内角和投影1如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度? ABCD可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=ABD的内角和+BDC的内角和=2×180°=360°。类似地,你能知道五边形、六边形 n边形的内角和是多少度吗? 投影2观察下面的图形,填空: 五边形 六边形 从五边形一个顶点出发可以引 对角线,它们将五边形分成 三角形,五边形的内角和等于 ;从六边形一个顶点出发可以引 对角线,它们将六边形分成 三角形,六

18、边形的内角和等于 ;投影3从n边形一个顶点出发,可以引 对角线,它们将n边形分成 三角形,n边形的内角和等于 。n边形的内角和等于(n一2)·180°从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?分法一 投影3如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。五边形的内角和为5×180°一2×180°(52)×180°=540°。 图1 图2分法二 投影4如图2,在边AB上取一点O,连OE、OD、OC,

19、则可以(51)个三角形。五边形的内角和为(51)×180°一180°(52)×180°如果把五边形换成n边形,用同样的方法可以得到n边形内角和(n一2)×180°投影7例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?如图,已知1,2,3,4,5,6分别为六边形ABCDEF的外角,求1+2+3+4+5+6的值分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:1+BAF=180° 2+ABC=180° 3+BAD=180°

20、; 4+CDE=180° 5+DEF=180° 6+EFA=180°1+BAF+2+ABC+3+BAD+4+CDE+5+DEF+6+EFA=6×180°又1+2+3+4+5+6=4×180°BAF+ABC+BAD+CDE+DEF+EFA=6×180°-4×180°=360°这就是说,六边形形的外角和为360°。如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°。对此,我们也可以这样来理解。投影8如图,从多边形的一个顶点A出发,沿多边形各边

21、走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°四、课堂练习课本83-84面1、2、3题。五、课堂小结n边形的内角和是多少度?n边形的外角和是多少度?作业:84面2、3;85面4、5、6、7。点题,板书课题.三、例题投影6例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABCD中,AC180°,求B与D的关系 分析:A、B、C、D有什么关系?解:A+B+C+D=(42)×180°=360°又AC180

22、°BD= 360°(AC)=180°这就是说,如果四边形一组对角互补,那么另一组对角也互补5、若从一个多边形的一个顶点最多可以引10条对角线,则它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形6、下列可能是n边形内角和的是 ( ) A、300° B、550° C、720° D、960°7、一个多边形的每一个外角都等于24°,则这个多边形是 边形.8、一个多边形的内角和与外角和的比是72,则这个多边形是 边形.9、某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是(

23、)A、三角形 B、矩形 C、正八边形 D、正六边形10、如图,在ABC中,AD是BAC的平分线,2=350,4=65°, 求ADB的度数.先具体后抽象,先练习后归纳,一可培养学生数感,二可有利于性质的得出,三可加深对性质的理解.教 学 反 思教学时间课题第七章复习二(7.2.27.4)课型新授教学媒体多媒体教学目标知识技能过程方法情感态度教学重点教学难点教学过程设计教学程序及教学内容师生行为设计意图一、双基回顾1、三角形的外角:三角形 与另 组成的角叫做三角形的外角.如图1, 是ABC的一个外角. x1450 图1 图22、三角形外角的性质(1)三角形的一个外角等于 两个内角和.注意:三角形的外角和等于360

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论