



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、有关短期电力负荷预测的研究 有关短期电力负荷预测的研究 摘要:电力的短期负荷预测是电力系统的一项重要工作,是实现供电可靠、经济管理的根底。由于电力负荷受到很多因素的影响,负荷预测方法开展至今,虽然已经积累了很多经验,但是还没有一种可靠的模型实用于不同地区。本文针对某市电力负荷的特点,提出了电力负荷短期预测方法。 关键词:电力负荷需求;因素;方法 中图分类号:F407文献标识码: A 引言 电力系统的负荷预测不仅保证了电力系统自身的平安,同时也是在今天市场经济的环境下保证能够有方案用电和进行合理有序供电的重要保证,此外随着电力科学技术的开展和现代社会市场化程度的不断提高,对电力系统负荷预测准确实
2、时的程度和合理有序的制定供电方案进行用电调度等方面的要求更加提高。而要提高对电力系统短期负荷预测的精确度就必须对其负荷预测的方法进行研究,有众多的科研专家做了此方面大量的工作,但是对电力系统短期负荷造成影响的因素非常复杂,故而我们对电力系统短期负荷的预测方法进行综述,对其原理过程和优点缺点等进行分析,为电力系统短期负荷预测提出其开展的方向和寻找到行之有效的方法。 一、电力系统负荷预测的概念 电力系统负荷预测法是供电领域近几年开展与应用起来的供电技术之一。它是指通过一定的统计与运算,将已经产生的电力系统的负荷和将要发生的电力系统的负荷精确的预算出来,以提高电力的应用效率并且节约电力能源。电力系统
3、负荷预测法在应用中一定要注意到预测并不等于完全准确地产生,也会受到诸如电力系统故障以及天气气候等因素的干扰,甚至会受到一些社会因素的限制。在已经应用该种方法的电力技术企业中,我们可以看到它的应用收效相当可观,一定程度上减少了不必要的电力资源的损耗与浪费,带来了方案与控制用电的全新时代。电力系统负荷预测对于电力企业经济效益的稳步提升与社会效益的增长都大有益处。 二、电力系统短期负荷预测的必要性 电力系统负荷预测中一个很关键的因素就是预测周期。负荷周期以年为单位,并且周期在十年以上的被称为电力系统长期负荷预测;而负荷周期以周、月甚至小时、日等为根本单位的就被称为电力系统短期负荷预测。在新的发电机组
4、进行安装的过程中,或电网需要进行规划和改建的工程里,需要运用到长期和中期负荷预测;调度中心需要制定发电的方案或发电厂需要一些电力报价数据时,那么需要短期负荷预测来预测未来一到七天之内的电力系统负荷值;电网的计算机实时监控会不断得出数据,需要及时对发电容量进行调度和调控,从而使其发挥最好的成效,也节约发电本钱,这就需要超短期负荷预测。在现实的电力市场中,短期负荷预测是最根本的根底工作,它的预测精度影响了电力电网的根本经济效益。也是保证电力电网稳定工作的前提。 三、影响电力系统负荷变化的主要因素 1、根本因素 从上文我们可以看出,交通、农业、工业的用电情况相比照拟平稳,原因就是它们对负荷的影响不算
5、很大,主要就是因为大多是居民用电。居民用电的自由是影响电力系统负荷变化的主要原因,居民有自主的权利随机选择开启或者关闭用电的设施,这就导致了电力系统负荷变化出现的随机性较强。 2、气候因素 影响电力系统负荷产生变化的另一个原因就是天气情况,寒潮、高温、取暖等都会使电力系统负荷增大,随着我国经济的开展,空调的普及程度越来越高,气温也将成为今后电力系统负荷比拟大的因素之一。 3、市场因素 市场环境中随着电力工业的快速开展,申。力市场对电力工业的推进,分时电价、竞价上网、动态电价等的实施,将成为影响电力系统负荷变化的很重要因素。 四、电力负荷短期预测方法 1、相似日法 相似日法对电力系统短期负荷预测
6、的预测日相应的负荷能够修正,从而得出预测结果的一种方法,其优点是应用原理非常简单,使用非常方便,所产生的使用效果也非常明显,是一种非常有用的电力系统短期负荷预测的方法。其缺点是根据电力系统负荷预测日进行参数的修正和建立起与之对应的评价函数非常困难。 2、状态空间法 状态空间法能够将电力系统的负荷进行分解,在所产生确实定分量用线性函数进行表达从而实现负荷预测的目的,而对其所产生的随机分量用状态空间模型的方法实现对其负荷进行预测,其优点是能够获得对电力系统负荷预测一系列的很多数据,能够得到更为准确的电力系统负荷预测值。其缺点是在电力系统负荷预测的实际工作中很难对量测噪音等进行估计。 3、回归分析法
7、 此方法在进行电力系统短期负荷的预测时根据对电力系统负荷产生各种变化的因素和数据加以分析,找出自变量与因变量所发生变化时的一定规律,从而能够列出回归方程式进而推理出电力系统将来变化所产生的负荷值。其计算原理相比照拟简单,对电力系统短期负荷预测的速度快,对于未曾出现的一些问题也能良好的预测,此为回归分析法的优点【1】。其缺点是由于其过于简单的计算原理对于所产生的复杂情况预测的精度不高,对于数据的分析比拟低。 4、卡尔曼滤法 在电力负荷中又把它叫作状态空间法,是一个把负荷分解成能够确定的分量以及随机分量的原理。在反映未来系统的状态上可以利用对于预报的方法来获得新的相关数据,在组合的过程中就会得到新
8、的预测模型信息,提升预测值的准确性。 5、指数平滑法 指数平滑法是利用电力系统负荷趋势外推测技术。为了到达平均的效果可以对其利用加权的形式,再加计算过程里的新数据其相关的权系数进行加大,也可以将陈旧的数据的权系数进行减小。在时变性的表达过程上,能够将近期的数据反映到影响未来负荷的程度值上,这个方法的作用主要是采用其平滑来对存在序列里的随机波动进行消除。 6、灰色预测方法 灰色预测这个方法主要是对系统中存在着不确定的因素进行的一个专门预测,是利用灰色模型里的微分方程中的单一指标来对电力系统进行预测。可以根据模型预测未来的负荷,这种方法适合在贫信息的条件下进行分析与预测。 7、时间序列预测法 时间
9、序列法依据时间顺序来得到一组观测值,通过相邻观测值之间的依赖性得到负荷预测值,它需要对以往的数值建立一个数学模型,按照时间的顺序进行规律性统计,从而描述电力系统负荷值的变化规律,然后确定出一个能够描述该变化的数学公式。平稳时间序列分析和非平稳时间序列分析这两大类是常用的时间序列法。由平稳时间序列分析法建立的序列模型包括自回归模型、滑动平均模型、自回归华东平均模型,由非平稳时间序列分析法建立的序列模型那么包括累计式自回归动平均模型和季节模型,其中ARIMA模型被作为时间序列模型的标准形式适用于非平稳的时间序列预测中。 8、模糊预测方法 模糊推理和模糊集合是对不确定问题进行处理的理论,模糊集合的作
10、用可以刻画出影响负荷的不确定原因,这也正是模糊预测这几年以来在电力系统负荷预测里流通的重要原因,把粗糙集和模糊放在一起进行负荷的预测,预测的结果有很高的精准度,这说明气温模糊化以后预测的精度比拟高。模糊法的缺点是学习能力不强,受到人们的主观因素较多。 9、短期负荷预测新方法 混沌理论 混沌时间的序列预测方法是才兴起的负荷预测计算方法。对于系统状态下的变量,将所需要的相关动力学的信息涵盖到系统里的任何一个变量在时间的序列上去。然后对于单变量进行时间序列重组到重构相的空间中去,但是其空间状态的轨迹所进行的是数据保存更改。 支持向量机 它是一种在统计学习的相关理论上所进行的一种预测的方法,是一个将经
11、典进行二次规划的一个问题所在,这样的方法可以快速的防止局部进行最优解同时也是唯一一个全局最优解。 数据挖掘 对于数据隐含或未知的含义,我们可以采取挖掘的形式来处理,同时在其具体的决策中我们能根据知识的一定规那么来进行知识的提取,而这种挖掘主要以概念及规那么等形式来表现知识的提取。 10、现代人工神经网络预测法 电力系统现代人工神经网络短期负荷预测的方法是随着计算机与网络技术而开展起来的高精度预测法。应用该种方法需要对计算机网络技术有较为深入的掌握,需要电力技术工作者具有全面丰富的专业知识。 人工神经网络的特点 人工神经网络借助计算机与网络设备的辅助力量,能够方便、快捷地处理来自电力系统的各类信
12、息,并将信息进行分类、整理与统计,最终计算出电力系统的短期负荷。首先,该种预测方法具有较高的并行结构和处理能力。它的并行分布处理能力能够更好更快的处理故障问题,适合对工程进行实时处理和动态控制;其次,具有高度的判断性和对发生事故的容错能力;再次,还具有强大的存储能力和归纳数据能力。人工神经网络预测通过记录过去的数据来工作,因此它的前提就拥有了较强的归纳学习能力,它可以处理一些由数据组成的控制过程中出现的复杂的问题。 人工神经网络的工作方式 由于人工神经网络具有学习和归纳能力,它的性能提高那么是由修改自身的参数来完成。它的工作方式由执行阶段和学习阶段构成。首先,执行阶段中神经网络处理输入的信息,
13、根据信息来完成相应的处理过程,进而将得到的结果输出。学习阶段那么是人工神经网络进行自我升级提高完善的过程,它通过对信息的学习和校对来进一步适应信息的特征。在电力系统短期负荷预测中,不确定性的控制问题一直都是研究的中心主题问题,因此针对不确定性而产生的人工神经网络根据不断完善自我性能来适应数据的不确定性,从而到达最正确的控制效果。因此执行过程和学习过程对人工神经网络来说是不可缺少的两个阶段,通过不断完善提高自身能力来进一步处理好数据,进而提高了人工神经网络的判断和稳定能力。 结束语 本文根据电力系统短期负荷预测提出了传统的时间序列预测法和指数平滑预测法,也介绍了现代人工神经网络预测方法。相信随着科学技术的不断开展
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 航运业区块链技术应用-深度研究
- 土方运输协议合同范本
- 公司商品转让合同范本
- 隐私保护数据共享-深度研究
- 动画创意内容生成-深度研究
- 国内凤爪贸易合同范本
- 土豆购销定金合同范本
- 2025年云应用开发与运维合作框架合同
- 微生物耐药性检测与管理-深度研究
- 能源互联网设备需求-深度研究
- 联通IT专业能力认证初级云计算、中级云计算题库附答案
- 广东离婚协议书范文2024标准版
- 24年追觅在线测评28题及答案
- 六年级语文上册14文言文二则《两小儿辩日》公开课一等奖创新教学设计
- 专题01相交线与平行线(原卷版+解析)
- 工程造价预算书
- 便民驿站运营方案
- 终止授权代理协议书模板
- 2024年保密教育培训知识考试题库(含答案)
- 医疗垃圾的分类及处理-95
- 智慧家庭工程师岗位技能培训装维练习卷附有答案
评论
0/150
提交评论