中考数学压轴题——动点1_第1页
中考数学压轴题——动点1_第2页
中考数学压轴题——动点1_第3页
中考数学压轴题——动点1_第4页
中考数学压轴题——动点1_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考专题动点问题详细分层解析(一)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1如图1,在半径为6,圆心角为90°的扇形O

2、AB的弧AB上,有一个动点P,PHOA,垂足为H,OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.HMNGPOAB图1(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).(3)如果PGH是等腰三角形,试求出线段PH的长.解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2. (3)PGH是等腰三角形有三种可能情况:GP=PH时,解得.经检验, 是原方程的根,且符合题意.GP=GH时, ,解得.经检验

3、,是原方程的根,但不符合题意.PH=GH时,.综上所述,如果PGH是等腰三角形,那么线段PH的长为或2.二、应用比例式建立函数解析式 例2 如图2,在ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=.(1)如果BAC=30°,DAE=105°,试确定与之间的函数解析式; (2)如果BAC的度数为,DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.AEDCB图2PDEACB3(2)OFOFPDEACB3(1)ABCO图8H例3(2005年·上海)如图3(1),在ABC中,ABC=90°,AB=4,BC=

4、3. 点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EPED,交射线AB于点P,交射线CB于点F.(1)求证: ADEAEP.(2)设OA=,AP=,求关于的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP的长.三、应用求图形面积的方法建立函数关系式例3 如图,在ABC中,BAC=90°,AB=AC=,A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,AOC的面积为.(1)求关于的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当O与A相切时,AOC的面积.解:(1)过点A作AHBC,垂足

5、为H.BAC=90°,AB=AC=, BC=4,AH=BC=2. OC=4-., ().(2)当O与A外切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.当O与A内切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.综上所述,当O与A相切时,AOC的面积为或.中考专题动点问题(二)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.专题二:动态几何型压轴题动态几何特点-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好

6、一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。一、以动态几何为主线的压轴题 (一)点动问题1如图,中,点在边上,且,以点为顶点作,分别交边于点,交射线于点(1)当时,求的长; (2)当以点为圆心长为半径的和以点为圆心长为半径的相切时,求的长; (3)当以边为直径的与线段相切时,求的长 题型背景和区分度测量点本题典型的一线三角(三等角)问题,试题在

7、原题的基础上改编出第一小题,当E点在AB边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解区分度性小题处理手法1直线与圆的相切的存在性的处理方法:利用d=r建立方程ABCDEOlA2圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R±r()建立方程3解题的关键是用含的代数式表示出相关的线段. (二)线动问题在矩形ABCD中,AB3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把A

8、BE沿直线l翻折,点A与矩形ABCD的对称中心A重合,求BC的长;(2)若直线l与AB相交于点F,且AOAC,设AD的长为,五边形BCDEF的面积为S.求S关于的函数关系式,并指出的取值范围;ABCDEOlF探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由题型背景和区分度测量点本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线沿AB边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二区分度性小题处理手法1找面

9、积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法2直线与圆的相切的存在性的处理方法:利用d=r建立方程3解题的关键是用含的代数式表示出相关的线段.例1:已知O的弦AB的长等于O的半径,点C在O上变化(不与A、B)重合,求ACB的大小 .分析:点C的变化是否影响ACB的大小的变化呢?我们不妨将点C改变一下,如何变化呢?可能在优弧AB上,也可能在劣弧AB上变化,显然这两者的结果不一样。那么,当点C在优弧AB上变化时,ACB所对的弧是劣弧AB,它的大小为劣弧AB的一半,因此很自然地想到它的圆心角,连结AO、BO,则由于AB=OA=OB,即三角形ABC为等边三角形,则AOB=600,

10、则由同弧所对的圆心角与圆周角的关系得出:ACB= AOB=300,当点C在劣弧AB上变化时,ACB所对的弧是优弧AB,它的大小为优弧AB的一半,由AOB=600得,优弧AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:ACB=1500,因此,本题的答案有两个,分别为300或1500.反思:本题通过点C在圆上运动的不确定性而引起结果的不唯一性。从而需要分类讨论。这样由点C的运动变化性而引起的分类讨论在解题中经常出现。变式1:已知ABC是半径为2的圆内接三角形,若,求C的大小.本题与例1的区别只是AB与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB

11、中, ,则 ,即,从而当点C在优弧AB上变化时,C所对的弧是劣弧AB,它的大小为劣弧AB的一半,即,当点C在劣弧AB上变化时,C所对的弧是优弧AB,它的大小为优弧AB的一半,由AOB=1200得,优弧AB的度数为3600-1200=2400,则由同弧所对的圆心角与圆周角的关系得出:C=1200,因此或C=1200.变式2: 如图,半经为1的半圆O上有两个动点A、B,若AB=1,判断AOB的大小是否会随点A、B的变化而变化,若变化,求出变化范围,若不变化,求出它的值。四边形ABCD的面积的最大值。解:(1)由于AB=OA=OB,所以三角形AOB为等边三角形,则AOB=600,即AOB的大小不会随

12、点A、B的变化而变化。(2)四边形ABCD的面积由三个三角形组成,其中三角形AOB的面积为,而三角形AOD与三角形BOC的面积之和为,又由梯形的中位线定理得三角形AOD与三角形BOC的面积之和,要四边形ABCD的面积最大,只需EH最大,显然EHOE=,当ABCD时,EH=OE,因此四边形ABCD的面积最大值为+=.对于本题同学们还可以继续思考:四边形ABCD的周长的变化范围.变式3: 如图,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分别为A、B,另一个顶点C在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由(广州市2000年考题) 分析:要使三角形ABC的面积最大

13、,而三角形ABC的底边AB为圆的直径为常量,只需AB边上的高最大即可。过点C作CDAB于点D,连结CO,由于CDCO,当O与D重合,CD=CO,因此,当CO与AB垂直时,即C为半圆弧的中点时,其三角形ABC的面积最大。本题也可以先猜想,点C为半圆弧的中点时,三角形ABC的面积最大,故只需另选一个位置C1(不与C重合),证明三角形ABC的面积大于三角形ABC1的面积即可。如图显然三角形 ABC1的面积=AB×C1D,而C1D< C1O=CO,则三角形 ABC1的面积=AB×C1D<AB×C1O=三角形 ABC的面积,因此,对于除点C外的任意点C1,都有三

14、角形 ABC1的面积小于三角形三角形 ABC的面积,故点C为半圆中点时,三角形ABC面积最大.本题还可研究三角形ABC的周长何时最大的问题。提示:利用周长与面积之间的关系。要三角形ABC的周长最大,AB为常数,只需AC+BC最大,而(AC+BC)2=AC2+CB2+2AC×BC=AB2+4×ABC的面积,因此ABC的面积最大时,AC+BC最大,从而ABC的周长最大。从以上一道题及其三个变式的研究我们不难发现,解决动态几何问题的常见方法有:一、 特殊探路,一般推证例2: 如图,O1和O2内切于A,O1的半径为3,O2的半径为2,点P为O1上的任一点(与点A不重合),直线PA交

15、O2于点C,PB切O2于点B,则的值为求其变化范围,若不变化,求它的值。(A) (B) (C) (D)分析:本题结论很难发现,先从特殊情况入手。最特殊情况为E、F分别为AB、AC中点,显然有EOF为等腰直角三角形。还可发现当点E与A无限接近时,点F与点C无限接近,此时EOF无限接近AOC,而AOC为等腰直角三角形,几种特殊情况都可以得出EOF为等腰直角三角形。一般情况下成立吗?OE与OF相等吗?EOF为直角吗?能否证明。如果它们成立,便可以推出三角形OFC与三角形OEA全等,一般情况下这两个三角形全等吗?不难从题目的条件可得:OA=OC,OCF=OAE,而AE=CF,则OEAOFC,则OE=O

16、F,且FOC=EOA,所以EOF=EOA+AOF=FOC+FOA=900,则EOF为直角,故EOF为等腰直角三角形。中考专题动点问题详细分层解析(三)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.专题三:双动点问题1 以双动点为载体,探求函数图象问题 例1在直角梯形ABCD中,C=90°,高CD=6cm(如图1). 动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,两点运动时的速度都是1cm/s. 而当点P到达点A时,点Q正好到达点C

17、. 设P,Q同时从点B出发,经过的时间为t(s)时,BPQ的面积为y(cm)2(如图2). 分别以t,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN. (1)分别求出梯形中BA,AD的长度; (2)写出图3中M,N两点的坐标; (3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y关于x的函数关系的大致图象. 评析 本题将点的运动过程中形成的函数解析式与其相应的函数图象有机的结合在一起,二者相辅相成,给人以清新、淡雅之感. 本题彰显数形结合、分类讨论、函数建模与参数思想在解题过程中

18、的灵活运用. 解决本题的关键是从函数图象中确定线段AB、梯形的高与t的函数关系式,建立起y与t的函数关系式,进而根据函数关系式补充函数图象. 2 以双动点为载体,探求结论开放性问题 例2 如图5,RtABC中,B=90°,CAB=30°.它的顶点A的坐标为(10,0),顶点B的坐标为(5,53),AB=10,点P从点A出发,沿ABC的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒. (1)求BAO的度数. (2)当点P在AB上运动时,OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线

19、的一部分,(如图6),求点P的运动速度. (3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标. (4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,OPQ的大小随着时间t的增大而增大;沿着BC边运动时,OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使OPQ=90°的点P有几个?请说明理由. 解 (1)BAO=60°. (2)点P的运动速度为2个单位/秒. 评析 本题是以双点运动构建的集函数、开放、最值问题于一体的综合题. 试题有难度、有梯度也有区分度,是一道具有很好的选拔功能的好题. 解决本题的关键是从图象中获取P的速度为2

20、,然后建立S与t的函数关系式,利用函数的性质解得问题(3).本题的难点是题(4),考生要从题目的信息中确定建立以B为直角顶点的三角形,以B为临界点进行分类讨论,进而确定点的个数问题. 3 以双动点为载体,探求存在性问题 例3 如图8,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿BA,BC运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒. (1)若a=4厘米,t=1秒,则PM=厘米; (2)若a=5厘米,求时间t,使PNBPAD,并求出它们的相似比; (3)若在运动过程

21、中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由. 评析 本题是以双动点为载体,矩形为背景创设的存在性问题.试题由浅入深、层层递进,将几何与代数知识完美的综合为一题,侧重对相似和梯形面积等知识点的考查,本题的难点主要是题(3),解决此题的关键是运用相似三角形的性质用t的代数式表示PM,进而利用梯形面积相等列等式求出t与a的函数关系式,再利用t的范围确定的a取值范围. 第(4)小题是题(3)结论的拓展应用,在解决此问题的过程中,要

22、有全局观念以及对问题的整体把握. 4 以双动点为载体,探求函数最值问题 例4 )如图9,在边长为82cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、C同时出发,沿对角线以1cm/s的相同速度运动,过E作EH垂直AC交RtACD的直角边于H;过F作FG垂直AC交RtACD的直角边于G,连结HG、EB.设HE、EF、FG、GH围成的图形面积为S1,AE、EB、BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为x(s),解答下列问题: (1)当0<X(2)若y是S1与S2的和,求y与x之间的函数关系式; (图10为备用图) 求

23、y的最大值. 解 (1)以E、F、G、H为顶点的四边形是矩形,因为正方形ABCD的边长为82,所以AC=16,过B作BOAC于O,则OB=89,因为AE=x,所以S2=4x,因为HE=AE=x,EF=16-2x,所以S1=x(16-2x), 当S1=S2时, 4x=x(16-2x),解得x1=0(舍去),x2=6,所以当x=6时, S1=S2. (2)当0x<8时,y=x(16-2x)+4x=-2x2+20x, 当8x16时,AE=x,CE=HE=16-x,EF=16-2(16-x)=2x-16, 所以S1=(16-x)(2x-16), 所以y=(16-x)(2x-16)+4x=-2x2

24、+52x-256. 当0x<8时,y=-2x2+20x=-2(x-5)2+50,所以当x=5时,y的最大值为50. 当8x16时,y=-2x2+52x-256=-2(x-13)2+82, 所以当x=13时,y的最大值为82. 综上可得,y的最大值为82. 评析 本题是以双动点为载体,正方形为背景创设的函数最值问题.要求学生认真读题、领会题意、画出不同情况下的图形,根据图形建立时间变量与其它相关变量的关系式,进而构建面积的函数表达式. 本题在知识点上侧重对二次函数最值问题的考查,要求学生有扎实的基础知识、灵活的解题方法、良好的思维品质;在解题思想上着重对数形结合思想、分类讨论思想、数学建模

25、等思想的灵活运用. 例1题图图1图2例题 如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。求抛物线的解析式;(用顶点式求得抛物线的解析式为)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得OBP与OAB相似?若存在,求出P点的坐标;若不存在,说明理由。分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况 2. 函数中因动点产生的相似三

26、角形问题一般有三个解题途径 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。练习1、已知抛物线经过及原点(1)求抛物线的解析式(由一般式得抛物线的解析式为)(2)过点作平行于轴的直线交轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线于点,

27、直线与直线及两坐标轴围成矩形是否存在点,使得与相似?若存在,求出点的坐标;若不存在,说明理由(3)如果符合(2)中的点在轴的上方,连结,矩形内的四个三角形之间存在怎样的关系?为什么?练习2、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处。已知折叠,且。(1)判断与是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;Oxy练习2图CBED(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理

28、由。练习3、在平面直角坐标系中,已知二次函数的图象与轴交于两点(点在点的左边),与轴交于点,其顶点的横坐标为1,且过点和(1)求此二次函数的表达式;(由一般式得抛物线的解析式为)(2)若直线与线段交于点(不与点重合),则是否存在这样的直线,使得以为顶点的三角形与相似?若存在,求出该直线的函数表达式及点的坐标;若不存在,请说明理由;CBA练习4图PyyCxBA练习3图(3)若点是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角与的大小(不必证明),并写出此时点的横坐标的取值范围练习4 (2009广东湛江市) 如图所示,已知抛物线与轴交于A、B两点,与轴交于点C(1)求A、B、C三

29、点的坐标(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似若存在,请求出M点的坐标;否则,请说明理由练习5、已知:如图,在平面直角坐标系中,是直角三角形,点的坐标分别为,ACOBxy(1)求过点的直线的函数表达式;点,(2)在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;(3)在(2)的条件下,如分别是和上的动点,连接,设,问是否存在这样的使得与相似,如存在,请求出的值;如不存在,请说明理由例1如图,已知ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,

30、分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t2时,判断BPQ的形状,并说明理由;(2)设BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR/BA交AC于点R,连结PR,当t为何值时,APRPRQ?分析:由t2求出BP与BQ的长度,从而可得BPQ的形状;作QEBP于点E,将PB,QE用t表示,由=×BP×QE可得S与t的函数关系式;先证得四边形EPRQ为平行四边形,得PR=QE,再由APRPRQ,对应边成比例列方程,从而t值可求.解:(1

31、)BPQ是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,即BQ=BP.又因为B=600,所以BPQ是等边三角形.(2)过Q作QEAB,垂足为E,由QB=2t,得QE=2t·sin600=t,由AP=t,得PB=6-t,所以=×BP×QE=(6-t)×t=t2+3t;(3)因为QRBA,所以QRC=A=600,RQC=B=600,又因为C=600,所以QRC是等边三角形,这时BQ=2t,所以QR=RC=QC=6-2t.因为BE=BQ·cos600=×2t=t,AP=t,

32、所以EP=AB-AP-BE=6-t-t=6-2t,所以EP=QR,又EPQR,所以四边形EPRQ是平行四边形,所以PR=EQ=t,由APRPRQ,得到,即,解得t=,所以当t=时, APRPRQ.点评: 本题是双动点问题.动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.例2如图,在中,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动设,(1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范围);(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由 分析:由BHDBAC,可得DH;由RQCABC,可得关于的函数关系式;由腰相等列方程可得的值;注意需分类讨论.中考专题动点问题详细分层解析(四)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.四、以圆为载体的动点问题 动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论